
HashMob
Z2lzdDpjZGFjMWM4ZGIxZTA5NGYz
NWZmYzZjMWY2YWZiZWUwMA==

What’s this?
Free to collaborate when stuck

CrackMeIfYouCan 2024
Write-up

HashMob.net
vavaldi@hashmob.net

Chapter 1

Preface

Allow me to preface this write-up by beginning to thank the organizers: KoreLogic, for
organizing the contest as well as the amazing members of HashMob.net who contributed to
the team’s performance during the competition. HashMob participated with one team this
year, instead of two different teams in previous years. Our street team had more members
than KoreLogic would like and had a large victory last year. To prevent it from happening
again, we decided to combine both teams into one.

The Pro team achieved their second victory in a competition (following the Victory in CTC
2022), attaining the #1 spot on the CMIYC leaderboard. Slightly ahead of team Hashcat
who submitted their final founds in the last seconds of the contest and nearly caught up to
us, leading to a thrilling photo finish. Thanks Cynosure Prime for putting up a good fight,
and great work to the new team vodka who briefly stole the show early. We look forward to
participating in more contests in the future and hope to see you all there.

1

C
ra
ck
M
eIfY

o
u
C
an

20
2
4
C
on

test
w
rite-u

p
H
ash

M
ob

.n
et

P
age

2

C
ra
ck
M
eIfY

o
u
C
an

20
2
4
C
on

test
w
rite-u

p
H
ash

M
ob

.n
et

P
age

3

CrackMeIfYouCan 2024 Contest write-up HashMob.net

Pro Team

• Vavaldi

• penguinkeeper

• Shooter3k

• Aaron-T

• AdamBlack

• Brad

• Cake

• Cochino

• Coin

• DAK

• outwrest

• WHYPHY

• 0.0.0.0

• cin

• afsa

• clem9669

• cyclone

• Flagg

• gatete

• justpretending

• kpd

• lapsikmees

• mostwanted002

• stumblebot

• w00dsman

• TalentedGuy

1.1 About HashMob

HashMob is a large, mostly discord-based, community that focuses on Cryptography and
Hash password recovery. Users have picked password recovery up as a hobby over the years
due to their interest in security or because of their jobs. We spend a lot of time working
with cracking hashes and performing research on passwords. HashMob was founded in 2021,
almost half a year after Hashes.org closed its doors in January of 2021. Since then it has
recovered over 682 066 653 new passwords / plaintexts and amassed a following of nearly
4000 members.

1.2 Contest Environments

Since we were merging the teams, we decided to reorganize our infrastructure and setup as
well. We implemented a WireGuard VPN inside a DMZ protected by a PFSense firewall.
Team Members could request access to the VPN, which granted them access to our internal
environment. From the internal environment it was possible to connect to a fileshare (Samba
installed on Ubuntu), our tools, and our other services.

For managing hashlists we used a clone of the HashMob website again, tweaked to automat-
ically submit new finds to CMIYC.

Page 4

CrackMeIfYouCan 2024 Contest write-up HashMob.net

We had a hashtopolis environment with some custom adjustments where we tried to deploy
larger attacks that would net us more insight or points. This environment allowed us to
combine the power of rented hardware and everyone’s personal computers to work towards
completing a single larger keyspace, which Hashtopolis distributed for us automatically. We
did run into some minor issues with Hashtopolis, resulting in negative keyspaces, but were
able to mitigate the errors enough to continue working with it.

Page 5

Chapter 2

Pro Team write-up

2.1 The Preparation

In preparation for the contest the members of the Pro team actively worked on setting up
the new environment and working on a few new projects for use during the contest. We
leveraged the ability to distribute keyspace over many machines using Hashtopolis (HTP).
This enabled us to utilize the collaborative power of many members more efficiently to perform
large attacks. For example, we could rent extra power from vast.ai or other locations and
hook them up to hashtopolis. They would then automatically pick up new tasks we specified
and start cracking hashes for us with minimal effort.

2.2 The Hardware

The Pro team had a few great contributors to the overall power of the team with one member
adding more than 12x 4090 by themselves. Roughly 32 self-owned Graphics cards were used
and an additional 15+ 4090 were rented for short bursts or to work through specific attacks
via Hashtopolis.

38x 4090

50%

19x 2080 (Super)

25%

5x 3090

6.7%
6x 3070

7.9%
1x 3080

1.3%
1x 7900 XTX

1.3%
1x 6900 XT

1.3%
1x 1080 Ti

1.3%
1x 3060

1.3% 1x 3050
1.3% 1x 1660super
1.3% 1x 1050 Ti
1.3%

6

CrackMeIfYouCan 2024 Contest write-up HashMob.net

The following table presents an overview of some of our core tools. This is not always an
exhaustive list as we might smash together scripts or use external software based on things
(say: archives) KoreLogic throws at us.

Overview of Used Software

Name Open Source Public Purpose

autocrack no no Auto Cracking
debug rule submitter no no Auto submission
debug rule receiver no no Auto submission
Hashcat* yes** no Password recovery
MDXfind no yes Password recovery
hash finder no no Analytics
hashgen yes yes Hash generation
HashMob Search* no yes Hash Lookup
Hashtopolis yes** yes Collaboration
HashMob Mirror no no Collaboration
gocrack yes yes Hash generation
Gramify yes yes Analytics
JohnTheRipper yes yes Password recovery
PACK yes yes Analytics
PACK2 yes yes Analytics
plain finder no no Analytics
ptt yes yes Analytics
RuleProcessorY yes yes PW generation
PRINCE yes yes PW generation
PCFG Cracker yes yes PW generation
sync.py no no Auto submission

* These tools can (also) be found on HashMob.net or their discord.

** Source code was modified and tweaked to suit our needs.

The Hashtopolis instance was modified to automatically submit any founds back to the Hash-
Mob instance based on the hashtype of the hashlist it was discovered in. We modified the
SendProgress API to perform this in a rather ’hacky’ fashion and for future instances we
would like to improve this (more on that later). We created a custom version of hashcat
that adds and adjusts some functionality. For example: it introduces a configuration file
that presets parameters such as parameters for hashcat brain. Additionally, we added a new
parameter to hashcat: -H<id>/ −−hashmob-id <id> which was a single parameter that set
several other parameters for our sync script (potfile path, hashlist file, output file, and some
others). The sync script would help automatically download left and found lists, as well as
upload new cracks and had the purpose of keeping everyone in sync with each other.

Page 7

CrackMeIfYouCan 2024 Contest write-up HashMob.net

2.3 Ready? Set...

Go! The contest started with two files being provided to us: ”cmiyc-2024 pro passwd 1.pgp”,
and ”cmiyc-2024 pro files 1.tar.pgp”. The passwd file contained a large assortment of user-
names and ’random’ hashtypes. These hashes we classified into the following types:

Hashlist Hashes Found Hashes Total

NTLM 2 262 3 517
SHA1-CUT 740 912
Radmin3* 66 248
ADSync (MS-AzureSync) 296 2 527
RC2 391 3 245
SAPh512 (X-isSHA512) 134 2 553
sm3crypt (SM3) 207 3 331
bcrypt 137 3 444
shiro2 765 3 379
bcr256 (12-cost) 18 2 738
bkr256 ($2k$) 15 2 599

* We did not receive the Radmin3 hashes until later from the radmin.reg.bz2 file inside the
cmiyc-2024 pro files 1 archive.

Page 8

CrackMeIfYouCan 2024 Contest write-up HashMob.net

2.4 Progression

As the contest progressed from one puzzle to the next, KoreLogic released more files. In total
6 cmiyc-2024 pro files were released. Each containing more information or hints about the
plains and we will go into more detail on these later. HashMob finished in first place with a
total of 4 898 862 854 points. Just slightly ahead of team Hashcat with 4 838 953 118.

Points were assigned based on cracks. KoreLogic used a point-per-hashtype system that
granted a set amount of points per crack per algorithm. There was no application of first-
blood, removing any time pressure constraints on submission.

Hashlist Points per Hash

NTLM 1
SHA1-CUT 337
Radmin3* 69 767
ADSync (MS-AzureSync) 102 535
RC2 360 449
SAPh512 (X-isSHA512) 524 287
sm3crypt (SM3) 557 057
bcrypt 4 194 303
shiro2 4 456 448
bcr256 (12-cost) 16 760 831
bkr256 ($2k$) 16 777 215

Page 9

Chapter 3

Analysis

Our general approach to attacking the lists was trying to crack a few of the hashes using
a mix of common passwords and specialized lists we harvested after analyzing the founds;
attempting to identify possible sources. For example: we identified a large amount of Mass
Effect related content (Game) in one instance and began scraping several websites to create
our own (n-gram’d) wordlist.

The following rules are the ones we used most during the contest (based on our rule aggrega-
tion tool):

’6 d]

$1 d]

’7 d]

*69 d]

T0

c p2 i41 i92

$! E ’8

’6 d D0

$!
sa4 sg6

$5
$ x0B

$1 d ’B

c

E p2 ’B

i6 E

The most common rule-components we used (based on our rule aggregation tool) were:

$1
$0
$2
c

]

$!
E

d

$3
$9
$7
$5
$8
$6
$@
$4
u

D9

[

10

CrackMeIfYouCan 2024 Contest write-up HashMob.net

T0

’6

$*
’7

D1

t

’8

D3

D2

^A

D8

}

^i

$$
p2

D7

’9

$#

3.1 Archives

3.1.1 cmiyc-2024 pro files 1

The first archive was released at the start of the contest and contained 4 files. ”arj.tgz”,
”bundle.zip”, ”gocryptfs.tar.bz2”, ”radmin.reg.bz2” and a README file. The README file
contained the instruction that file hashes were not worth points, and therefore were not worth
submitting.

The radmin.reg.bz2 contained the radmin3 hashes previously mentioned. We extracted the
.bz2 archive using your standard tools (winrar, bzip2). We extracted the radmin hashes by
following this tutorial: https://www.synacktiv.com/en/publications/cracking-r

admin-server-3-passwords and attempted to crack hashes using the following program:
https://github.com/synacktiv/Radmin3-Password-Cracker.

The gocryptfs.tar.bz2 contained a slew of GoCryptFS containers, an algorithm we previously
saw in 2022 and approached it in almost exactly the same way. Right after the contest we
managed to successfully write an improved cracker for gocryptfs that went at approximately
60 H/s on a Ryzen 7 3700X w/ 16 threads. The general validation flow of our cracking
attempts was:

cipher = AES-GCM using HKDF(scrypt(password ,salt ,N,R,P,Len))

try cipher.decrypt(EncryptedKey):

if pass:

return Cracked

We attempted to crack the password protected bundle.zip, but were eventually unable to
do so. The trick to this archive was that each file was encrypted with a small, but unique
password. The combined password for each file individually would make up the final document
password. However, john’s tools only extract the hash of the first archive. Meaning that this
was uncrackable if you didn’t properly extract all hashes for the archive.

The arj.tgz file contained a large amount of .arj (A
¯
rchived by R

¯
obert J

¯
ung) archives. We

Page 11

https://www.synacktiv.com/en/publications/cracking-radmin-server-3-passwords
https://www.synacktiv.com/en/publications/cracking-radmin-server-3-passwords
https://github.com/synacktiv/Radmin3-Password-Cracker

CrackMeIfYouCan 2024 Contest write-up HashMob.net

attempted to crack them using an old ARJ cracker: http://old-dos.ru/files/file_167
7.html. First in windows, (see screenshot), and then in linux. This allowed us to open the
archive and view its contents. We continued cracking the archives throughout the contest
and later discovered some interesting correlations between the contents of the notes and the
users (we will get into later).

>arj cat note_lakenyam

Ne

3.1.2 cmiyc-2024 pro files 2

The second archive contained 4 files. alg issue.txt, 2 flavor text leak files, and one pro.pcap
file. We were looking for hints in the leak astroturf and leak drone files at first, but at the end
of the contest discovered these were simply flavor text. The alg issue.txt file seems to make
references to the RC2 list in that it’s ”nothing off the shelf”. Probably requiring a hint from
KoreLogic, or for us to properly analyze the content and find possible modifications (such as
converting base64 to hex, or transposing the hash).

We were able to extract the pro.pcap wifi hashes using hcxtools and were able to successfully
recover the password quickly. The password: base64 decode(TWljaGFlbCEh) did not lead
us anywhere else, unfortunately. According to KoreLogic, it was possible to use the Wi-Fi
password to decrypt traffic that transferred credentials over HTTP/FTP. This could allow
us, as attackers to try the passwords against other lists.

Page 12

http://old-dos.ru/files/file_1677.html
http://old-dos.ru/files/file_1677.html

CrackMeIfYouCan 2024 Contest write-up HashMob.net

3.1.3 cmiyc-2024 pro files 3

Contained two files. A ”winoneforthe.zip” file containing many .zip archives. And the
”maybe sell shoes” file Containing a malformed email chain / several messages. The winone-
forthe.zip archive was protected by the password: base64 decode(emlwcGV y). The mal-
formed messages contained a reference to a Java hashing library that’s been mangling data
for weeks. The email was mangled by removing the first letter of a word if it was a vowel
(aeiou). The mangling is not something we were able to recognize or exploit in any of the
lists.

Kelly

hate this

junk ffshored software that have

to make work

just shoot me

Zemus

Huh?

Kelly

h just had the most garbage Java hashing library dumped n me

pparently been mangling data for weeks

’d show you but then you’d go blind too nd who will drive me

to the bar

The winoneforthe.zip archive contained many zip archives where the filenames were made up
of 2 names (first name + last name). We used hashcat mode 17225 to crack the files and
were able to successfully recover the plaintext of 645 / 964 archive hashes. When each archive
was unlocked, the file ”<username>.txt” was shown, based on first character of first name +
last name. Turning AgnusSalas into asalas. The ”.txt” file itself contained a reference to a
youtube video (based on ?v in a youtube link) + several timestamps. The timestamps refer
(for youtube videos) to the time in MM:HH plus the n-th word. For 10:48:6 it refers to the
6th word shown in the transcript of the video at 10:48.

Page 13

CrackMeIfYouCan 2024 Contest write-up HashMob.net

transcript_212RSgT0vdk

asalas-a: 10:48:6 40:34:4 49:10:5 16:23:5 13:23:12

which translates to:

asalas-a:in it guess batteries all

We also identified similar patterns in other hashlists, so this was a pretty big reveal for us.
We found out at the end of the contest that this is not just timestamps, but also book ciphers
and similar applications to movies or youtube videos. We did not figure out this nuance until
later and were only able to partially make use of the information.

mwaldrop2:NT14d98d5f9df17f8ace50e58b56a10f7d:3:4:1 0:5:1

3.1.4 cmiyc-2024 pro files 4

The fourth archive contained a zip file protected by the password: base64 decode(QWxsaXN3ZTEx).
The baritubbs data.zip archive contained an account metadata.yaml file that specified the de-
partments of members. A gen rc2.py file with instructions on how the RC2 hashes were built.
And two flavor text leak files.

Page 14

CrackMeIfYouCan 2024 Contest write-up HashMob.net

3.1.5 cmiyc-2024 pro files 5

The fifth archive contained four files protected by the password: base64 decode(bGV ha3M =).
App.log contained usernames, partial plaintext passwords with the last five characters redacted,
and a csum field which we figured out to be a CRC8 checksum. This enabled us to get our
first bcr256 by simply guessing the password of ‘utrahuman‘ to be ‘codebreaker‘ (the same
as a failed user login right before). KoreLogic validated our found which allowed us to bet-
ter identify the algorithm used for bkr256 as we had a valid hash:plain combination. The
”cigo” file contained a hint indicating that leading 0’s were being stripped from a hashlist
(SHA1).

$2k$12$iyvX.kDndyq/YiUvv7J.NPApguNMJG65lr2k7H0A7Y3d7LLc1tOS:codebreaker

Page 15

CrackMeIfYouCan 2024 Contest write-up HashMob.net

3.1.6 cmiyc-2024 pro files 6

The 6th archive contained a email from Jacklyn to Aliza and made another reference to a
book cipher. The example data they refer to is the transcript hidden in the MoryMoctorow
archive. The contents of which are included below the email (mmoc.txt). The password for
the archive is: base64 decode(MzI6NTI6MTY gNToyNDoz). According to one member
of our team, Cory Doctorow’s sci-fi book ”The Rapture of the Nerds” is a recommended
read!

To: Aliza Andersen

From: Jaclyn Kamu

Cc: Mohana Elbaz , Boyd Mcqueen

Subject: Corporate Security Policy Violations

Aliza ,

I’ve been notified by Audit of a breach of policy by some of your

staff. Apparently they’ve been getting around the "don’t reuse

passwords between regular and privileged accounts" rule by tying them

together with a scheme so they only have to remember one , and breaking

other rules in the process. See the attached for example data , use

32:52:16 5:24:3.

I’m told this isn’t unique to your division , but is most prevalent

there. We are going to have to force password resets on Monday , as

well as schedule additional training.

We have on file your requests for a PAM solution; nevertheless all

violations of this policy face disciplinary action.

Thank you for your cooperation.

Jaclyn Kamu

rimtaSgGz_4 transcript

32:52:16 5:24:3 7:26:17 0:42:5 3:57:5

3.2 Hashlists

Some patterns we identified during the contest that applied to all hashlists were:

• 3 words with spaces

• 3 words with space + symbols

• Ending in YYYY or @YYYY

• Lower + symbol

• Word + digit + same word

• Upper lower (symbol) digit (ex: Dapod-
cyd@2011 — Cbeca)

• Date format: 22Aug2013

• Timestamp: 32:52:16 5:24:3

• Characters from TV/Movies pulled
from IMDB/Wikipedia/Fan wikis

• Names from movies: name1name

• Names from movies: name1name2name

• Indian first name with suffix DD

Page 16

CrackMeIfYouCan 2024 Contest write-up HashMob.net

• Indian first name with suffix @DD

• Indian first name with suffix YYYY

• Indian first name with suffix @YYYY

• Indian first name with suffix @DDDD
(rare)

3.2.1 NT(LM)

The NTLM list was fairly straightforward as it was not a very obscure or mangled algorithm.
The hashes were prefixed with NT, but not much else. The passwords were relatively
normal and primarily consisted of normal passwords and ngrams with rules applied to them.
Some common rules were inserting a special character after or in place of a space char-
acter. Something that is fairly difficult for hashcat to do as the ’s’ rule only replaces all
instances.

0ebfcabe4f9b9ef34c683fff4a163cd4:And passes it-back

297b3c121ba92453718c4cb9b7df98e5:Reliable -communication

7cd024211fad70c6ceb2272f78568d41:A!burner in the

34227038ad9db84b4a8d895c96d3ecd3:the fallen!Rifle

9347da21424048f4f8a2e858ed0bf660:the shaft of-The

7d2865824a0855b8fb36c6dede43868a:of %The beautiful

d2eef988f94895476404ac00039ac1a8:will Ensure $that
48c72dbf221938b4295b1a33462f9944:pausing$To look

42ac64b9c3279b8a3156f29ea7cf2118:Simple &Network7

835c6a6b770ec5f3801c8eefb0cad0ad:We)control the7

f44b89c457ebb0f099d70ee5de5dcfc8:procedure +is a7

016e7a9df46327c7dcbc76c0eed83d5e:His sword%into5

11382e970c4565d0a30f166831d7cf48:The mill *house1

395423f338d986476e0347c82121c48b:has $The responsibility

e0dbcab160ff36c14a3f439b6031fae8:attached To $that
56da672088e84b8797cc27ca35b00883:a Practical+level

cbed0be65f7c07d5a96534f7a563ab80:tree trunk in=The

26bc9e2df3e161806635f6a15b97677e:thin _layer Of ice

707d66044fe8aceea1bcc0960fb88b3c:Proposed!Official

2b284e16a9b9f5bb48b8a334b3d5945f:the$Flames on the

62b1ca4ff7e7d1ff18339c6b53625e2e:lying back in*The

75fe5000b65421f0fca787971c0d83cd:alwas1hapoen

85280a608fd7ae976eaf2668a703707b:pushes!them back

As well as some dvorak transposed passwords based on the hint given by KoreLogic. We used
the following python3 script to convert wordlists to dvorak. We are still uncertain if this is a
coincidence for some of the lists.

qwerty = "‘1234567890 -= qwertyuiop []\\ asdfghjkl;’zxcvbnm ,./~!@#$%^&*()_+
QWERTYUIOP{}|ASDFGHJKL :\" ZXCVBNM <>?"

dvorak = "‘1234567890 []’,. pyfgcrl /=\\ aoeuidhtns -; qjkxbmwvz ~!@#$%^&*(){}\"<>
PYFGCRL ?+|AOEUIDHTNS_:QJKXBMWVZ"

#I’m not proud of this either

qwerty = qwerty.replace("\\", "\\\\")

dvorak = dvorak.replace("\\", "\\\\")

translation_table = str.maketrans(qwerty , dvorak)

def qwerty_to_dvorak(text):

Translate the text

Page 17

CrackMeIfYouCan 2024 Contest write-up HashMob.net

return text.translate(translation_table)

with open("YourFileHere.txt", "r", encoding="utf8", errors="ignore") as file:

for line in file:

print(qwerty_to_dvorak(line.rstrip("\r\n")))

4e900e01416c4c941c8147590f0f47c2:Camxrpb2 ,cb

9b75fab3d41bce1877ece6e449d72e22:Dcbemryrp1

162ddf565077f1eec7d2512e0abd2d3d:I.byn.{2

30b19ef98082de2750248c572b65de7e:Tamn.od@1100

e21981bd8e92915b1eca198f5242cd07:I0eu@yd.p1

7259dfa542770aa1f471669ed9ea7ab4:Uagoycba{82

7aec3e2fe351bb862441b3a8f98c91a6:Taxcnab@1987

84f51b9d52145077ff847a1f04af486d:IGPGTPCODBA27

8593d1a817507fed6c991cbf0266df45:Tanamxgp[01

62ac5ce1afdfc31312ad19de78eeb28f:Hacdabgmab21$
6c5627d2d35334768cb903be91478bbe:Ir ,ydam@0305

12e29434d7ba656befc3a23336f233af:Hgb.@051983

16fbcd580cef086bb17243cdf91809b0:Hab.yy.01!@#

5e30745d180d1ae739e03556d88ef00a:>nchad@2804

724682f5ea9ed38a48e382459f3c7830:Cxpadcm@4321

f9a64f503c4da06d17d819794bb8ebb0:Hajtorb1121#

3.2.2 StripHash (SHA1)

We faced some more trouble tackling this list than expected. The SHA1 hashes were modified
to remove characters from it. Hashes not being fully accurate or missing characters was not
an unfamiliar topic for us. Dating back to all the way to 2014 with the release of LinkedIn
on hashes.org where it turned out hashcat would validate hashes, even if they were not a full
match (hashcat does not validate the first 8 bytes of a sha1 hash). KoreLogic pulled this trick
on us in previous years because they like playing with their food. One of the troubles we had
was matching the plains back to their original after being cracked in an efficient way so we
could submit them properly.

One approach we attempted was to pre-/suffix every hash shorter than 40 characters with
every hex character. A replacement that looks something like this (sorry for your eyes).
Which worked well, except that the size of the hashlist became 5GB and produced a lot of
invalid hashes that could not be cracked.

\1a\n\1b\n\1c\n\1d\n\1e\n\1f\n\10\n\11\n\12\n\13\n\14\n\15\n\16\n\17\n\18\n

\19\na\1\nb\1\nc\1\nd\1\ne\1\nf\1\n0\1\n1\1\n2\1\n3\1\n4\1\n5\1\n6\1\n7\1

\n8\1\n9\1

Another approach we looked into was using sha1-half, focusing on the middle portion of the
hash, potentially eliminating a lot of duplicates from the hashlist. Due to varying hash lengths
we never ended up fully implementing this, but I believe this is a valid angle for cracking the
hashes more efficiently.

The plains within the SHA1 list were very similar to those in the NTLM hashlist. We also
performed an analysis of the founds to try and identify what potential wordlists might have
the best effect. We did this using the HashMob plain-finder run in a loop for each plain we
recovered.

Page 18

CrackMeIfYouCan 2024 Contest write-up HashMob.net

hashes.org-2020 138

hashes.org-combined 137

hashmob.net_2022-12-31 136

hashmob.net_2022-12-31.official 135

hashes.org-2012-2019 126

0x69BE_v1_top_1000M 119

cyclone_hk_v2 100

hashes.org-2018 91

hashmob.net_2022-12-31.huge 90

COMB_passwords 90

hashes.org-2019 87

hashkiller-dict 75

hashmob.net_2022-12-31.larger 72

found.2015 66

0x69BE_v1_top_100M 56

antipublic 51

clem9669_wordlist_medium 48

found.2016 47

hashmob.net_2022-12-31.user 46

hashmob.net_2022-12-31.large 45

hashes.org-2017 39

0x69BE_v1_top_10M 34

hashmob.net_2022-12-31.medium 33

Top102Million-probable-WPA 31

clem9669_wordlist_small 31

Top120Million-probable-WPA 31

Top31Million-probable-WPA 23

LiveJournal 22

hashkiller_2022_01_11 22

rockyou 21

ignis-1M 19

SkullSecurityComp 18

0x69BE_v1_top_1M 17

10M Popular 16

hashmob.net_2022-12-31.small 16

hashes.org-2021 15

Collection1passwords 14

DailyQuiz 14

hashmob.net_2022-12-31.tiny 13

Top65Thou-probable-WPA 12

hashmob.net_2022-12-31.mini 10

zxcvbn 9

Wiki-en-all 6

artists_nopunct 5

artists 5

Top1933-probable-WPA 4

0x69BE_v1_top_1k 4

subjects 3

0x69BE_v1_top_1000M_reduced 3

weakpass_3a 3

subjects_nopunct_nospace 2

Top66-probable-WPA 2

hashmob.net_2022-12-31.micro 2

Page 19

CrackMeIfYouCan 2024 Contest write-up HashMob.net

3.2.3 RAdmin3

We use a conversion script to convert the radmin3 hashes to a format supported by Hashcat
(-m 29200). https://fossies.org/linux/hashcat/tools/radmin3_to_hashcat.pl. To
split it up per user we used the following two scripts:

#!/bin/bash

Create a directory to store the individual files

mkdir -p split_files

Initialize variables

file_count=0

output_file=""

Read the input file line by line

while IFS= read -r line; do

If the line starts with "[HKEY_LOCAL_MACHINE", start a new file

if [[$line == "[HKEY_LOCAL_MACHINE"*]]; then

Increment the file count

file_count=$((file_count + 1))

Set the output file name

output_file="split_files/file_$file_count.reg"

Write the first line (the HKEY line) to the new file

echo "$line" > "$output_file"
else

Append the line to the current file

echo "$line" >> "$output_file"
fi

done < "radmin.reg"

echo "Data structures have been split into individual files in the ’

split_files ’ directory."

#!/bin/bash

Directory containing the split files

split_dir="split_files"

Iterate over each file in the directory

for file in "$split_dir"/*; do

Extract the user number from the file name (e.g., file_92.reg -> 92)

user=$(basename "$file" .reg | cut -d’_’ -f2)

Run the Perl script and save the output to {user}.hash

perl ~/Downloads/radmin3_to_hashcat.pl "$file" > "${user}.hash"

echo "Generated hash for user $user in ${user}.hash"
done

echo "All files have been processed."

Our first pattern with this algorithm was: <word>! - essentially $! as a rule. We also
identified <name>1<name> and <name>1<name>2<name> as a pattern. Due to only 248
hashes existing, it was difficult to find a lot of patterns in a limited time.

Page 20

https://fossies.org/linux/hashcat/tools/radmin3_to_hashcat.pl

CrackMeIfYouCan 2024 Contest write-up HashMob.net

3.2.4 ADSync

These hashes were MS-AzureSync PBKDF2-HMAC-SHA256 hashes that had an additional
semicolon (;) at the end. Removing them allowed hashcat to load the hashes as mode 12800.
Most of the plains recovered for this algorithm were popular passwords based on common
dictionaries. We appended many of the popular patterns to these dictionaries throughout the
contest.

3.2.5 RC2

We were the first to submit cracks for RC2, right before the hint was dropped. This surprised
even KoreLogic who thought we were smart enough to figure out the algorithm (thanks for
the compliment). In reality, we planted a camera in their office in 2023, which allowed us to
snoop on their custom source code.

Our first cracks were obtained by correlating passwords from the GoCryptFS and GoCryptFS
Notes. We found that the RC2 password from a user was based on their GoCryptFS Password
+ GoCryptFS Note combined into one as indicated in the below image.

$RC2$100$xvIn2YMuRGE=$kIf7lbik5v3TQ9oLryb+EGpxqr4PppTL:Adhira2311
$RC2$100$Pc7fifQqFXw=$YUtxplxVo+yjNoUPNiMta4g8bSPBKnC+:Aarohi7886
$RC2$100$acy+uTviQnU=$txJCgXsURJtaVY+taeOaBvk6QyeDf0bM:Aakash2005
$RC2$100$6txdEu+Rix0=$1OcbKGK7YcfB4oXfOhl21QWeRlbo2PPa:Abeer101@
$RC2$100$QrcckFRvpvE=$rbqEVrtmg2pjh8vEPtlGQ30UgVAuZSPP:Aaryan@11
$RC2$100$fqbktpVxQQQ=$GHE2rlC99jilB4JQg6/cURORTEaQvwyc:Adarsh2208
$RC2$100$eCdrpqWLiyY=$RAhLPmpBKTyI8TcV/iPfMje5zHvXsfI7:Akshara2011
$RC2$100$M2k62B7SGBk=$buYVM94gh0JpF+yVWfvxs2UjWZtuxfJJ:Akshay777*
$RC2$100$Bd9dBcfV4eE=$6znOwS7vT5h8MBdUDaYHyjyST2mUCZrl:Ananya2911
$RC2$100$4XOfvEudr7o=$HvD8+EuaLBF8taCwTGs/Ewjx11mizRUI:Ayush@424
$RC2$100$z1bTZ4PuCmE=$sfKM4o2zkuldBdVXCPpwOmmMiUBNAU0e:Arjun@098
$RC2$100$1YHqThKfRNQ=$nBcmvuIwoQ+p4ktAd6ygsp+ERQitWQj0:Bhavya143$
$RC2$100$rJJDLzE/gHQ=$vU9ud+nEShD2bs98EKKJgSMiTLvvl+tN:Charan2007

Timestamp: 2024-08-10_19:12:04 GMT

New cracks: 13

Lines received: 13

Well-formed: 13

Repeats from previous submissions: 0

Page 21

CrackMeIfYouCan 2024 Contest write-up HashMob.net

We continued this process for the other recovered GoCryptFS passwords. Once the source
code for generating the hashes was finally released. We worked on creating a cracker for it.
We did this based on the script provided by KoreLogic as we fashioned ourselves a custom
cracker in Python:

import sys

import threading

from base64 import b64encode , b64decode

from Crypto.Cipher import ARC2

from Crypto.Util.Padding import pad

def prepare_key(password):

return password.encode ().ljust(16, b’\x00’)[:16]

def rotate(strg , n):

n = n % len(strg)

return strg[n:] + strg[:n]

def encrypt(plaintext , key , iv , rounds):

cipher_text = plaintext.encode () if isinstance(plaintext , str) else

plaintext

cipher_text = pad(cipher_text , ARC2.block_size)

for i in range(rounds):

cipher = ARC2.new(key , ARC2.MODE_CBC , iv)

cipher_text = cipher.encrypt(cipher_text)

rotate_distance = cipher_text[0]

cipher_text = rotate(cipher_text , rotate_distance)

b64_encrypted = b64encode(cipher_text).decode ()

return b64_encrypted

def crack_hash(password , hash_line):

hash_parts = hash_line.strip().split(’$’)

if len(hash_parts) != 5 or hash_parts[0] != ’’:

return # skip invalid lines

_, algo , rounds , iv_b64 , expected_hash = hash_parts

if algo != ’RC2’:

return # skip invalid RC2 hashes

iv = b64decode(iv_b64)

rounds = int(rounds)

key = prepare_key(password)

encrypted = encrypt(key , key , iv , rounds)

if encrypted == expected_hash:

print(f"{hash_line.strip()}:{password}")

def crack_hashes(wordlist_file , hash_file):

with open(hash_file , ’r’) as f:

hashes = f.readlines ()

with open(wordlist_file , ’r’, buffering=10*1024*1024) as f:

for line in f:

password = line.strip ()

threads = []

for hash_line in hashes:

Page 22

CrackMeIfYouCan 2024 Contest write-up HashMob.net

t = threading.Thread(target=crack_hash , args=(password ,

hash_line))

t.start()

threads.append(t)

for t in threads:

t.join()

def main():

if len(sys.argv) < 3:

print("Usage: rc2_cracker.py <wordlist_file > <hash_file >")

sys.exit(1)

wordlist_file = sys.argv[1]

hash_file = sys.argv[2]

crack_hashes(wordlist_file , hash_file)

if __name__ == "__main__":

main()

3.2.6 SAPh512

SAPh512 (a sha512 variation of SAP CODVN H (PWDSALTEDHASH) iSSHA-1) was un-
supported by Hashcat, but luckily supported by John.

./john --format=saph 32.left --wordlist="YourWordlist.txt"

Based on the source code from John we concluded that the algorithm was likely:

SHA512x14999($plain.SHA512($plain.$salt)). To further improve cracking speed we worked
on creating a custom hashcat kernel (99769 (SAP CODVN H (PWDSALTEDHASH) x-
issha512)) which was able to recover hashes hundreds of times faster than JTR. During the
creation of the kernel we spent limited time working on the list, and even when the kernel
was done we were unable to fully utilize this speed increase. As a result, most of our cracks
are simple wordlist finds or suffixed with numbers/years. 8 lowercase alpha + ! or . was one
of the first patterns we discovered in this list.

One thing of note is that the next large release of Hashcat will include this algorithm. This
applies to SM3Crypt as well.

Page 23

CrackMeIfYouCan 2024 Contest write-up HashMob.net

3.2.7 SM3Crypt

Our first cracks for SM3 crypt were made based on association attacks. By taking a cracked
hash by user1 and finding another hash made by user1, we were able to guess their password
with 100% accuracy. For example, our first crack was based on a previously recovered radmin3
plain.

$radmin3$6d0062006c0061006c006f0063006b003300*x*x:leonardo.
$sm3$BoZlIHLA6SZBo4yb$l27gNpDkvkdXG5SnOmdhruTDg1yTsfIj21Y3eLs/ux2:leonardo.

$radmin3$640065006d00610067006f006f006400*x*x:Ananya@1
$sm3$Uo9Y.hP2NBgPEUO2$NdVKNTS.AG.JBo9.9IoWLWwpiW4./2iS3Ak9Obc/.j1:Ananya@1

Later we were able to also apply similar logic to the data from the app.log file (containing
login logs, usernames, and partial passwords + CRC8 checksum) to relatively accurately guess
the password of a user (within 1-5 attempts).

$sm3$0kQRhjWBTKvpzYRf$eUyBssbngoO4Gos2HkD9fe3OHTSNYZVvlifSnjX8Jb2:Audia391
$sm3$0kQRhjWBTKvpzYRf$eUyBssbngoO4Gos2HkD9fe3OHTSNYZVvlifSnjX8Jb2:Audio197
$sm3$0kQRhjWBTKvpzYRf$eUyBssbngoO4Gos2HkD9fe3OHTSNYZVvlifSnjX8Jb2:AudioPor
$sm3$1xd4edButtinEB9t$pFeBbs9KbAjK.44vvufC.9E7AEBM932O.0xh/WkDDW3:Adrein23
$sm3$1xd4edButtinEB9t$pFeBbs9KbAjK.44vvufC.9E7AEBM932O.0xh/WkDDW3:Adrywall
$sm3$29xb/lMgxLBtKoWM$vFfj8n9l5NPC9ly69R5ENEG7BrrU4sSn0C/EpTzCdv5:warrenc55
$sm3$29xb/lMgxLBtKoWM$vFfj8n9l5NPC9ly69R5ENEG7BrrU4sSn0C/EpTzCdv5:warriors!
$sm3$29xb/lMgxLBtKoWM$vFfj8n9l5NPC9ly69R5ENEG7BrrU4sSn0C/EpTzCdv5:warrousse
$sm3$68dkoUqVbe1PeIB3$DSNnr9d5lH794EKDV4W89VbA2GjE/0qFTUhWvgitjr.:vip_trading
$sm3$6Hqkl0ZSivcqzfgZ$aZ.eQ18MG9fdeMXCGivsaal7c2zbf55Ow1or0PRX0z4:swingin85
$sm3$6Hqkl0ZSivcqzfgZ$aZ.eQ18MG9fdeMXCGivsaal7c2zbf55Ow1or0PRX0z4:swinton78
$sm3$81dMUUkzOzvxfqI3$xyprKHMunSffzvbAcAyKqKkegjwy9rALUmpGpdRrBZB:!Amtgbis1
$sm3$9pq6bChanoMO62EB$2SWhS3GEymjty9KHhWx8/68bTVtibjbvYGnJrzuXBfD:Dhruv12345
$sm3$9pq6bChanoMO62EB$2SWhS3GEymjty9KHhWx8/68bTVtibjbvYGnJrzuXBfD:Dhruv@2015
$sm3$/bEEVBueXmdmNm0M$mZaZuEQ.T/5bbVMsNNA85/2j96H8o3Ekh6JN7oszF7B:Althea154
$sm3$DDzOneUG0aUvz5UU$Ra3LcoUg2fNEqvnpk6VnRraYE64JFu1Obpr7sCOQOC/:Igbeti99
$sm3$DDzOneUG0aUvz5UU$Ra3LcoUg2fNEqvnpk6VnRraYE64JFu1Obpr7sCOQOC/:Igborika
$sm3$dpBGB8mDJ3UAb95T$Ny92FLyBfU23fGZgoxE25N50HMbF5Dh7ijR4kisU.t3:HgbWM5VN
$sm3$EaN.q3c8Id85zMNH$qsU/OayqUmUksNiLYehxx8HYbDlmn0rHTkPeQrzkWG6:Ventures12
$sm3$fmM9Pf97Wi67KDEK$NERLCHW71oKmUxrGipmyf6QExQe7iMtZad2YcNUOaT5:ira.klopot
$sm3$FOiRJBNeYefmAq3e$h8cB2smz9ymwr0qeiYMv2zkerdVnqa .. w9lhSDPGK.5:Ammulove1
$sm3$hFbCQ5lYWhzow3v2$/BkubXVyt9qr6ucQf1ZDjJpZuL6olXQAsBTj0qnCjt0:Akshay2703
$sm3$HtyxzdpCGv0Kjoy2$lW/dBI3hJP5t2zCGxoIgnencIyuh6LCxZqfDd8Z6RT1:uAdC3N9b

Timestamp: 2024-08-11_13:36:54 GMT

New cracks: 25

Lines received: 66

Well-formed: 66

Repeats from previous submissions: 2

Errors encountered:

Other malformed lines or invalid plains/hashes: 39

Netting us a few cracks before we were able to validate them with a cracker. A few hours (2)
before the end of the contest we created a cracker that was capable of cracking the provided
hashes. Earlier attempts to create a cracker failed due to some library issues causing the
resulting hash of a plain to be different from the CMIYC hash. Even when we knew the
plaintext was correct due to our previous efforts.

Page 24

CrackMeIfYouCan 2024 Contest write-up HashMob.net

One thing of note is that the next large release of Hashcat will include this algorithm.

3.2.8 bCrypt

bCrypt was a challenging algorithm for us and we failed to identify significant patterns as
we did with Shiro2. The bcrypt list contained various hashes with a cost factor of 10 (1
024 iterations) and 12 (4096) iterations. Our first attacks were based on common passwords
and revealed a distinction between the two cost factors. Namely, the 10-cost hashes could
be cracked, whereas the 12-cost yielded no results. Even after more varied attacks. We
(correctly) deducted that the 12-cost hashes belonged to the bcr256 list, with the bkr256
starting with $2k$.

We identified a lot of basewords that existed in smaller lists like ignis1M, but running a
wordlist with many rules is a difficult task for bCrypt as it’s a slow algorithm. We discovered
that many of the bCrypt passwords were of similar length, and all contained a special char-
acter. Our first attack was a reduction of the HashMob dictionary with 8-9 length passwords
containing ’s and .’s. This led to some results but was inefficient overall. We started applying
rules and eventually figured out a portion of the passwords were made up of a word + num-
bers or @ + numbers where the first letter was capitalized in almost all cases. We therefore
focused on heavier rule attacks with a more limited wordlist.

Included are some things we tried, most with little success:

123456789 with ?s ?s?s and ?s?s?s pulled from HM large prefixed and suffixed

7 len word + 2 digit ?d?s or ?s?d

Xxx-xxx-xxxx as digits with -

"Ilove" and "i_love_" + 2-4 meta words

Went over founds 10-13 len with],]],]]]

4-5len uppcase word from found @ + 3-4 len digit

Looked at 4-5 len upper word with # or . or ! for a 2-4 digit

7-8 words : and c with #1 @1 and .ru .com !! .. . ! prepended and appended

Len 4-9 word from meta + 23! Or 23. T0

Len 4-9 word from meta with

T0 $1 d]

T0 $2 d]

Len 4-9 word from meta with 2 digit ends T0

Len 4-9 words from meta with 1 digit prepend and appends T0

Cmiyc usernames + 1 digit append and prepend

Page 25

CrackMeIfYouCan 2024 Contest write-up HashMob.net

Cmiyc usernames + ! and . appended lower and T0

Founds with one space and two -> s ! and s (, all lower

s .

s *

s +

s *

s ^

s -

s _

Word 4-9 with 1$$ append T0

Formats like "Tacnao@2021 ..." with 1-4 digits and @[0-9]+$
Founds that end in digits with] and] append ! . and *

Variations of love_ i_love_ i_<3_ a_ the_ this_ that_ what_ from_ some_ when_

their_ been_ as a prefix with len 4-9 and with spaces and +’s

Len 4-5 words with u and 4 digits

Len 3 word with ! and - then 4 digits (tried l u and])

Prepend 2d + @ then word T0’d

Due to the -a9 mode not being usable with the Hashcat brain feature, some data about
attempted candidates was likely lost on the machine being used to identify new patterns and
then repeated by other team members looking to assist with the hashlist. Identifying ideal
methods to distribute attempted candidates stably would likely have bolstered the recovery
efforts.

3.2.9 Shiro2

Shiro2 is the algorithm that carried us to victory. A high-value algorithm. Where hashcat was
able to utilize bcrypt to its fullest, we were able to make use of Shiro2 to propel us forward
into the rankings. Shiro2 is essentially Argon2 with a slight tweak. To convert Shiro2 into a
format supported by JohnTheRipper, use the following commands:

shiro2 -> argon2

sed ’s%^\ $shiro2%%;s%\(t=[0-9]\+\) ,\(m=[0-9]\+\)%\2,\1%’ 34.left

argon2 -> shiro2

sed ’s%^%$shiro2%;s%\(m=[0-9]\+\) ,\(t=[0-9]\+\)%\2,\1%’ argon2.found

~/cmiyc_2024/john/run/john.pot | sed -e ’s/^/\ $shiro2/g’ -e ’s/m=65536 ,t=1/t=1

,m=65536/g’

We made use of both JohnTheRipper with –format=argon2-opencl, and Cyclone’s very own
Argon2 cracker (https://github.com/cyclone-github/argon_cracker). Our first cracks
were simple passwords like in bcrypt.

$argon2id$v=19$m=65536 ,t=1,p=4$V0m2DAEb/MoHYABXGUzehQ$x:butterfly.
$argon2id$v=19$m=65536 ,t=1,p=4$jm0HA7o4vBhEulWoEs0X3A$x:snickers!
$argon2id$v=19$m=65536 ,t=1,p=4$yWVZlnrgUknAssQwn/7zDw$x:iloveyou!!
$argon2id$v=19$m=65536 ,t=1,p=4$1IBi9t6bbmNjaZP0PFQD4A$x:creative.
$argon2id$v=19$m=65536 ,t=1,p=4$PdIFVdFJqXTcsYiGu5HejQ$x:december!
$argon2id$v=19$m=65536 ,t=1,p=4$y33XH6zlKnKBKf+QQwE6Bg$x:nintendo!
$argon2id$v=19$m=65536 ,t=1,p=4$1lMRbMm4ecCnMaQfbJBelA$x:kristina!
$argon2id$v=19$m=65536 ,t=1,p=4$DXrfshMewhbGpCL4SO4XYw$x:nightmare!
$argon2id$v=19$m=65536 ,t=1,p=4$hM/JuhdDtezdFj4llWWgzg$x:rammstein.
$argon2id$v=19$m=65536 ,t=1,p=4$ylPMKsZ/TFRmlVn34bqRKA$x:carpediem.

Page 26

https://github.com/cyclone-github/argon_cracker

CrackMeIfYouCan 2024 Contest write-up HashMob.net

We soon discovered words with similar rules to those we’ve seen before, and later also per-
formed association attacks based on the hashes we cracked from other lists. Leading to cracks
like these:

$argon2id$v=19$t=1,m=65536 ,p=4$+rou5ngisGmktsUDt/1A2g$x:radion-dankov
$argon2id$v=19$t=1,m=65536 ,p=4$z63Eks6y+3D7TOt0iWPucw$x:regina-rebina
$argon2id$v=19$t=1,m=65536 ,p=4$lCNH7sjuCEQsBvI6/vvW3A$x:Ashish@14
$argon2id$v=19$t=1,m=65536 ,p=4$R1frHNCtgN2qPbpaN7FAGQ$x:Akshaya@16
$argon2id$v=19$t=1,m=65536 ,p=4$ScM9ndoI5vPKFgzVe37i0w$x:Cbeca*12
$argon2id$v=19$t=1,m=65536 ,p=4$WOI9n1gEKTK5huyHDIjgfQ$x:Dabcod@2016
$argon2id$v=19$t=1,m=65536 ,p=4$FLbwjWm1NpkZuohGe75Trw$x:Subsidiaries0

And writing simple rules like this allowed us to specifically target founds that matched our
expected patterns

:

c $@ $2$0$2$4
c $@ $2$0$1$0
c $@ $2$0$1$1
c $@ $2$0$1$2
c $@ $2$0$1$3
c $@ $2$0$1$4
c $@ $2$0$1$5
c $@ $2$0$1$6
c $@ $2$0$1$7
c $@ $2$0$1$8
c $@ $2$0$1$9
c $@ $2$0$2$0
c $@ $2$0$2$1
c $@ $2$0$2$2
c $@ $2$0$2$0
c $@ $1$4
c $@ $1$5
c $@ $1$6
c $@ $1$7
c $@ $1$8
c $@ $1$9
c $@ $2$0
c $@ $2$1
c $@ $2$2
c $@ $2$3
c $@ $2$4
c $!
c $0
$1 d]

$2 d]

* possible puzzle hint

Page 27

CrackMeIfYouCan 2024 Contest write-up HashMob.net

A new realization hit when we saw ”John Bates”. Someone who also appeared in our Star
Trek wordlist (created due to the other lists). This quickly lead to the discovery of Star Trek
references, as well as other possible sci-fi references. Leading to cracks such as:

$argon2id$x$1m7IE+EO8Jkd0ngvEmFoAA$x:Tal Shiar Female #2

$argon2id$x$3zpiKojTN2NmhVtz1u1t0Q$x:Tony Cicci

$argon2id$x$AjH3JdRXpRbGpFOxVv+cSA$x:Voyager Computer

$argon2id$x$ArY4cgy/kHv8MnZRmBv8Lw$x:Trainee #1

$argon2id$x$B9KdlWstEjfQpc4bHjqx0w$x:Yang Drummer

$argon2id$x$Be+BixTbjbX282z7l1bC3g$x:William Telfer

$argon2id$x$D4gjjBrMbrzuXUNYQlhDOw$x:Zhat Vash Member

$argon2id$x$E1QGwCJbpFrzXYiucDxuqA$x:Voyager Security Officer

$argon2id$x$HK9FBz36gU+OQ43nyUbV+A$x:Xindi-Insectoid Councillor

$argon2id$x$IPkV7npgTsXxtpN808FJYA$x:Young Crewman

$argon2id$x$J3jRw+ceISg/6cQUK/4P+g$x:USS Titan Ensign

$argon2id$x$K3EDfrzgHcV7O4ffufTMsA$x:Tellarite Delegate

$argon2id$x$OBW41rES1BDi0UQ2lTFBoQ$x:The Hayseed

$argon2id$x$OQC2BNcqX3g/MXSXB/p+pQ$x:Weapons Pirate

$argon2id$x$Qk7woL4Q8tnF1Dm1/OCVhg$x:Xindi-Reptilian Soldier

$argon2id$x$SYAEeeCdkn+qmeqMUM0WhA$x:Transporter Officer

$argon2id$x$TT6sI4NpC7VbEARH58ftow$x:Thomas Harewood

$argon2id$x$VFHDjXwxl6UjDE5ZgO3zFg$x:Yeoman Rand

$argon2id$x$WA5ktQmRRxK1O8hL90T7yw$x:Terminal Jockey #2

$argon2id$x$WSnCcZ6aRkJEGnSxOnZXyA$x:Vulcan Wedding Guest

Based on our hits in SM3Crypt we attempted to again try name1name, name1name2name, as
well as similar patterns. We tried these patterns on other lists as well and had great success
on the Shiro2 list, where the patterns were present as well.

$argon2id$x$f5MG+j5CVLwmkvmcb8kh/w$x:Maras1Maras
$argon2id$x$mgU+6EyH5mCX8psQCsSUlg$x:L’Kor1L ’Kor
$argon2id$x$0lFghDp112ZXHLy1MR57Cg$x:Moklor1Moklor
$argon2id$x$46yzyphSWxHHRelq5iso8A$x:Navigator1Navigator
$argon2id$x$ApSV9FysnjYzql+nZw/EQg$x:Motura1Motura
$argon2id$x$Ga1I3Nd/p8SUeHqn2Wk3rA$x:Norman1Norman
$argon2id$x$V4q/IqnBHyXg1lAywa+UCg$x:Orgoth1Orgoth
$argon2id$x$fblze51nbi7wCGsSmtQZcA$x:Nathan1Nathan
$argon2id$x$Edjw+KGyd852rvtFJMeVtA$x:P’Chan1P ’Chan
$argon2id$x$LquFJvt9zBNiI0j3hVbvaA$x:Protector1Protector
$argon2id$x$cnV7rw+Tu0CwG/ze2tj40A$x:Parent1Parent
$argon2id$x$hmBgz1+TwjDlHj+dbZFI3Q$x:Patterson1Patterson
$argon2id$x$iZviUFk71yLE4tqxxucAow$x:Q-Judge1Q-Judge
$argon2id$x$jhBgEf9KodUA46GlZPvlsw$x:Patron1Patron
$argon2id$x$p2uW80vlNU2iqKGbEIxL8A$x:Plasus1Plasus
$argon2id$x$rRhIEbG33TYicvm0TFWFyQ$x:Painter1Painter

Page 28

CrackMeIfYouCan 2024 Contest write-up HashMob.net

3.2.10 bcr256 / bkr256

Bcr256 and bkr256 are both the same algorithm, where bkr256 start with 2k instead of 2b,
but is virtually identical in other aspects. Although we did try using Sha256 or Keccak-256,
we did not attempt to use the salt of bcrypt as key for a SHA2-256 HMAC. The finds we were
able to recover for these two algorithms were based on association attacks with usernames
or hints (CRC8 from the log). This allowed us to get a small amount of cracks without the
ability to properly validate the cracks. With the knowledge in hand that we had several valid
hash:plain combinations we intensified our attempts to uncover what algorithm was being
used, but unfortunately to no avail. Below is a code snippet of a valid find, and how it was
created for future reference / those curious.

import hmac

import base64

import bcrypt

import hashlib

plain = hmac.new("iyvX.kDndyq/YiUvv7J.Ne".encode (), "codebreaker".encode (),

hashlib.sha256).digest ()

plain = base64.b64encode(plain)

target_hash = b"$2b$12$iyvX.kDndyq/YiUvv7J.NePApguNMJG65lr2k7H0A7Y3d7LLc1tOS"
print(target_hash)

print(plain)

if bcrypt.hashpw(plain , target_hash) == target_hash:

print("Successfully Validated")

Page 29

Chapter 4

Wishlist

Dear Santa, today was a good day because we won the contest! But there were some things
that I wished could be done differently. If we’re good this year, could we please have some
of the following things? I know some might not be feasible or possible, but that doesn’t
change that they would be awesome to have! And if I’m supposed to do it myself, please have
someone do it for me (or give me motivation to do my own work :)).

• Hashcat brain features 2 set to not require -S as it only transfers attack information
and no plains

• A propeller cap, we’d look so cool

• An analysis tool that visually maps, and clusters similar plains together and has output
options per ’cluster’

• A (wildcard) supported search tool that has libgen indexed

• Bandwidth > 10Mbps please @MyISP

• For KoreLogic to stop using PGP and maybe a more granular way to find out what
hashes were invalid :)

• A team-shared archive of books, movie scripts, transcripts, and other sources

• Improved AMD support for Hashcat (HIP RTC)

• Brain client support for -a9 and –stdin

• Improved statistics automatically generated in HashMob for better analysis

• Hashcat support for 3 dictionaries

• Hashcat support for salts + peppers ex. md5($pepper.$plain.$salt)*

• Hashcat not using : as separator or change the format of 11900-12100 and NetNTLM
:)

• Rule to replace the nth instance of a character (Hashcat issue 3812)

• Rule to insert a character before/after the nth instance of a character

• Rule to remove all characters of a specific charset (Hashcat issue 4030)

30

Chapter 5

Closing Notes

This concludes the write-up of the HashMob.net Pro team. It was a challenge at times to get
everyone set up and working on the same software tools (”It works on my machine”). We have
had many learning opportunities and although we were able to achieve first place, we see a lot
of room for improvement in our coordination and collaboration as a relatively fresh team, with
this year adding 10+ new members. We again wish to thank all members of team HashMob
and the contest staff for their contributions and support. Thank you for not only taking the
time to read the writeup, but also the closing notes. Finally, I’d like to invite everyone to
check out the https://hashmob.net/ website and consider joining our community, spreading
the word, and joining the discord community (linked on the website). It’s an open community
where you can actively research passwords/attacks, and learn more about the general field of
cryptography. Our community contains members of various backgrounds with a wide variety
of skill sets. Almost all relevant questions can be answered expertly. Finally Finally (for real)
we invite you to visit the first page again and take a gander in the top right corner. Enjoy,
and until next year!

-Team HashMob

31

https://hashmob.net/

Chapter 6

Unfiltered Opinions

Included below are several thoughts and opinions on the contest from the team.

• gatete: I enjoyed this year’s challenges and appreciated KoreLogic’s creative ideas and
patterns used to generate the hashes. Looking forward to next year!

• mostwanted002: Great stuff. Happy with my first time participation as a Pro Team
member. Learned a lot, and hyped up for next one!

• 0.0.0.0 : Thank you to KoreLogic for putting on a great contest that unites the
community. I had a blast and looking forward to future events.

• stumblebot: I especially like the idea of including real-world hash modes that are not
already supported by popular cracking tools, forcing us to come up with solutions that
can be integrated and used more widely. While we had some great success with them,
in retrospect I’m not a huge fan of simply pulling data from online sources and using
them as passwords/phrases directly. This is not reflective of how users tend to select
their passwords and this felt more like a ’CTF’ challenge rather than a real test of our
skills.

• Flagg: I witnessed a lot of different challenges that engaged SMEs from many different
areas, which was really cool. Sure I like the ”pure cracking” part of it, but clearly we had
numerous people who enjoyed reverse engineering, decrypting files, correlating cryptic
clues, and developing custom crackers. So overall this competition had something for
everyone. I would say it was very rough on smaller teams.

• Cake: An interesting mix of hashes this year. One might say it’s closer to a CTF than
anything. However, I feel that you might actually find this as an IRL scenario. I think
that makes it more exciting to have a go at those harder hashes!

• Vavaldi: Glad I was able to participate this year and found the contest hashes to be
challenging and fun. Overall, a job well done!

• cyclone: KoreLogic once again brought us a complex and engaging CMIYC contest,
and I greatly appreciate the time and thoughtfulness that go into organizing these each
year. The custom algorithms kept us on our toes as we wrote crackers for them, and the
mix of hash cracking and cryptography was both fun and challenging (and sometimes
downright annoying! Ha). However, I would prefer fewer ”Alice in Wonderland” hal-
lucinations in the contest playbook and origins of mutated plaintexts, in favor of more
realistic scenarios. Based on the scoreboard alone, this year’s contest left all but a few
Pro teams struggling to put points on the board. As always, I’m looking forward to
next year!

• penguinkeeper: Great CMIYC year and I couldn’t be prouder of Team Hashmob,

32

CrackMeIfYouCan 2024 Contest write-up HashMob.net

even if it was one of the most chaotic weekends I’ve had in a while. Thanks to KL for
another great competition! Looking forward to CMIYC 2025

Page 33

	Preface
	About HashMob
	Contest Environments

	Pro Team write-up
	The Preparation
	The Hardware
	Ready? Set...
	Progression

	Analysis
	Archives
	cmiyc-2024_pro_files_1
	cmiyc-2024_pro_files_2
	cmiyc-2024_pro_files_3
	cmiyc-2024_pro_files_4
	cmiyc-2024_pro_files_5
	cmiyc-2024_pro_files_6

	Hashlists
	NT(LM)
	StripHash (SHA1)
	RAdmin3
	ADSync
	RC2
	SAPh512
	SM3Crypt
	bCrypt
	Shiro2
	bcr256 / bkr256

	Wishlist
	Closing Notes
	Unfiltered Opinions

