HashMob

Passwords are like underwear. Don’t leave them out where
people can see them, change them regularly, and don’t loan ’em
out.

Twitter, 2007
CHRIS PIRILLO

b a

<4

CrackTheCon 2022 Write-up
HashMob.net
vavaldi@hashmob.net

Chapter 1

Preface

Allow me to preface this write-up by beginning to thank the wonderful members of Cyno-
SurePrime (CSP) for organizing the contest, as well as the amazing members of HashMob.net
who contributed to the performance of the teams during the contest itself. HashMob par-
ticipated with two different teams in this contest. One team for the pro division, and one
team for the street division. Although a few of the Pro team had participated in CMIYC
2021 before, a large chunk of them had not played in any contest prior to CrackTheCon, and
the Street team had never played together at all. With this in mind the performance and
enthusiasm shown during the contest is something to applaud.

The Pro team successfully secured the #1 spot on the leaderboard, marking it the first Win
for the team. The Street team landed on the #8 spot but nevertheless performed admirably;
gaining many experiences along the way. LevenshteinAmphetamine proved to be an admirable
opponent, making it close until the very end. john-users also performed well, recovering more
hashes than anyone else in one category. We look forward to participating in more contests
in the future, hope to see you all there.

Pro Team

e Vavaldi e Cochino e clem9669
e penguinkeeper e foordeluxe e gatete
e Shooter3k e virodoran e Just
e _cin e w(OOdsman e SoSander
e Jimmalina e Wingman4l7
e Adam Black e 0x4CO00
Street Team
e b&vr e UwWUu as a service
e mostwanted002 e m4ulkOrb

o AlwaysAwake

Crack The Con 2022 Contest write-up HashMob.net

1.1 About HashMob

HashMob is a large, mostly discord based, community which focuses on Cryptography and
Hash password recovery. Users have picked password recovery up as a hobby over the years
due to their interest in security or because of their jobs, and spend a lot of time working with
cracking hashes and research on the passwords of users. It was founded in 2021 almost half a
year after Hashes.org closed its doors in January of 2021. Since then it has recovered over 399
306 307 new passwords / plaintexts and amassed a following of nearly 900 members.

1.2 Contest Environments

Each team was given access to a copy of the HashMob.net web-application with a custom
back-end script that would use the available API of the contest to automatically submit new
found solutions regularly. These environments were restricted in access so only authenticated
team members from each respective team could participate. Registration was protected with
a secret key which was made aware to each team via their discord channels. i.e. the teams
were unable to see each others’ hashlists and founds and their applications did not interfere
with each other.

Click or drag hashlists to this area to upload them

Create new Hashlist

L Combined Left Lists
‘Show Premium Hashlist Options

OTHER

1/ Leaderboard
User Hashlists

Page 2

Chapter 2

Pro Team write-up

2.1 The Preparation

In preparation of the contest the members of the Pro team actively tried to recover as many
of the Pro and Street hashes as possible. Partially for fun, partially to see what the CSP team
had in store for us. The Pro teams were given one set of MD5 hashes, and one set of berypt
hashes. The Street teams were given one set of SHA1 hashes, and one set of md5crypt hashes.
The rest of the preparation time was spent getting people familiar with a new environment,
new scripts and tools were being written which could help us during the contest.

Overview of Demo Lists
Category Hash Type Found Left Total
Pro MD5 60 771 617 61 338
Pro berypt 497 4 503 5 000

2.2 Software Used

Listed below are some of the software used by the Pro team, although a majority of them
are public / open source tools, some are closed source, modified open source, or specifically
developed for the contest. The Hashtopolis instance was modified to automatically submit
any founds to the HashMob instance based on the hashtype of the hashlist it was discovered
in. We modified the SendProgress API to perform this in a rather "hacky’ fashion and for
future instances we would like to improve this (more on that later).

Crack The Con 2022 Contest write-up HashMob.net
Overview of Used Software
Name Open Source Public Purpose
Hashcat* yes yes Password recovery
MDXfind no yes Password recovery
HashMob Search* no yes Hash Lookup
Hashtopolis yes** yes Collaboration
HashMob Mirror no no Collaboration
Gramify* yes yes*r* Analytics
PACK yes yes Analytics
PACK2 yes yes Analytics
Plain-Finder* no yes Analytics
RuleProcessorY* yes yes PW generation
PRINCE yes yes PW generation
Audacity yes yes Audio Analysis
sync.py no no Auto submission

* These tools can (also) be found on HashMob.net or their discord.

** Source code was modified and tweaked to suit our needs.

*** The Gramify version used in the contest is in-development and will be released soon

2.3 The Hardware

The Pro team has a large show up with a variation of hardware. Some participating with
some impressive hardware like the UHD Graphics 620, or the more mediocre 11X RTX Quado
6000s. A grand total of 31 Graphics cards were used, with a total of 150 CPU Cores of varying
brands and Clock Speeds.

3x 1660 Super

3x 3070 Ti

2.4 Ready?

2x 3080 Ti

2x 3080

2x 2080 Téx 2060

Set...

1x 1080
1x 3060
1x 3060 Ti

1x 1070 Ti
1x 1080 Ti

2x 1050 Ti

2x 970

11x RTX Quadro 6000

Go! The first minutes of the contest were hectic, mostly spent identifying which algorithms
we were being challenged with. CrackTheCon provided a total of 6 files for both teams to
work with. Each list but one was in a .txt format and was easy to start investigating. The
other was a .mp3 and seemed to be corrupted or in another form modified with our first

Page 4

Crack The Con 2022 Contest write-up HashMob.net

thought being Steganography. With the start of the contest we created a discord channel for
each hashlist so that team members could hop between hashlists and keep the chat on-topic
and focused on the hashlist. A single General chat was available as well as a ’pins’ channel
for important announcements and messages.

2.5 The Infamous Lists & Results

The lists presented to us for the 2022 CrackTheCon contest were made up of various algo-
rithms. We’ll go over each hashlist one at a time, discussing how we approached it, what
we found and the final conclusion. If you are interested in taking on the 2022 list yourself, I
recommend stopping after this section. The lists we were offered were named: 936 Troubador,
Agent Glitch, Gay Melanoma, HC Safe, he-ran-somewhere, numbers”3.

HashMob finished in first place with a total of 3 567 294 points. Closely followed by Leven-
shteinAmphetamine with 3 208 138 points.

Hashlist Plains Found First Blood Total
936 Troubador 24 524 11 015 29 154
Agent Glitch 42 42 20 040
Gay Melanoma 1426 531 34 999
HC Safe 0 0 13 092
he-ran-somewhere 6 121 2 336 20 682
numbers”3 20 476 18 916 33 000

Page 5

Crack The Con 2022 Contest write-up HashMob.net

2.6 936 Troubador

Hashlist Plains Found First Blood Total
936 Troubador 24 524 11 015 29 154

This hashlist was interesting. We were initially left scratching our heads when we were
presented with a file named 938 Troubador, with a hashlist named 936 Troubador. Until
we realized there was a typo, and later identified this hashlist was referring to the pop-
ular XKCD comic about password usage (found here: https://xked.com/936/). Following
this, we tried different algorithms such as MyBB and VBulletin with different combina-
tions of the phrase ”correct horse battery staple” until we received a hit on a space de-
limited combination of words with the hashcat mode 2811 for IPB / MyBB (also known as
MD5 (MD5 (SALT)MD5 (PASS))). Enumerating further we discovered more words relating to xked
which resulted in a scraping session of the api XKCD had for their comics in JSON format
and building a wordlist on it. In the end, we ended up with 368 base words, some of which
were used only partially in the lower count of words (n-grams) and some in the larger count
of words (n-grams). The following wordlist gives an overview of the different lengths of plains
we discovered:

‘Words Plains Unique

Found Words
1 Word 0 0
2 Word 2795 309
3 Word 10337 368
4 Word 11097 368
5 Word 294 99

2.6.1 General Approach

Our general approach to this list was first identifying which algorithm was used to hash the
plaintexts. After discovering this, we moved on to getting a lay of the land - seeing which
base wordlist or source might have been used to recover the hash. For this list, we identified
that the xkcd website and comics were a core source of information, and moved to try both
xked scraped lists as well as common English words, slowly working up our list and having
Hashtopolis do the heavily lifting of combining all plaintexts. To create our wordlists we
primarily made use of the combinator.exe and combinator3.exe tools which are part of the
hashcat-utils toolkit.

2.6.2 Timeline

This section gives an overview of the timeline, listing (major) events with time notation as
HH:MM.

00:00 Contest Starts
01:56 First Blood by Vavaldi

03:29 Discovery by _cin that 2 and 3 word combinations were possible (not just 4+)
48:00 Contest Ends

Page 6

Crack The Con 2022 Contest write-up HashMob.net

2.6.3 Learning Points

This list was fairly straightforward. It took a little while to identify the algorithm since we
were busy with other lists and didn’t get hits with simple wordlists until we discovered and
properly worked out the XKCD reference. The later discovery that 2 and 3 word combinations
were possible was a surprise moment to quite a few working on the list as no one had bothered
trying them yet - working through them quickly expanded our base wordlist.

Page 7

Crack The Con 2022 Contest write-up HashMob.net

2.7 Agent Glitch

Hashlist Plains Found First Blood Total
Agent Glitch 42 42 20 040

This hashlist was presented to us as an .mp3 file, which already confused a few of us. viewing
the file in a text editor or using the ’strings’ linux command showed that portions of the
file contained Wordpress / PHPBB3 hashes strewn throughout the file, grouped together in
chunks. Extracting them with RegEx allowed us to recover a total of 5 hashes which gave
the plains: ”"mix” and ”salt”. This gave us the thought that the salts of the hashes might be
mixed around. Searching the name Agent Glitch brought us to a SoundCloud from hOffman,
who authored the song ”Agent Glitch” (A hint later verified this). While importing the two
files in Audacity as raw data and displaying their audio, a note was made of the fact that
both audio files lined up perfectly. The extractable hashes overlapped perfectly with the null
bytes shown between the frames of MP3 files and the following image illustrates this with
the top image being the encrypted file, and the bottom file being the original audio file from
SoundCloud.

T !]J“HHW \nl (A R O T

’l UiREG LR wquﬁurlqu rw “W”'VUVVW|' “'“'WHWWHM“" Tk “Ilwyu' i

‘ AA Mlil lu‘ I ”””H“ \‘| \i \Iu \M '
WVV Mq,luuquHW\w|www‘”rmuuu Wl’””

Following this realization, we were able to quickly decrypt the file by XOR’ing the given file
against the original and obtained a valid file with 20040 hashes. We then started recovering
more plains which gave more hints to what the rest of the hashes might hold, in total we
recovered an extra 36 hashes here for a total of 40 - leaving 20k. The idea that they might
be mixed salts, modified, reversed or otherwise transposed was suggested and a lot of combi-
nations where tried. Due to the low cost function we were able to process a higher amount of
plains than otherwise possible, but with 20,000 * 20,000 possibilities leading up to a 13.4GB
file of PHPASS hashes, we were unable to make much progress and kept coming back to the
list to try and figure out what changes were made on account of the fact that this list held
the most plaintexts and we had already cleared the first hurdle - something none of the other
teams had done yet, this gave a great advantage if we were able to unlock the other plains
and could even win us the contest with this list alone. Due to the amount of possibilities and
little actual hits we were receiving we did not commit to our original idea in full and instead

Page 8

Crack The Con 2022 Contest write-up HashMob.net

focusing on trying a lot of different ideas with half effort. Once the last hint dropped from
CynoSurePrime we were determined to discover what the exact plains were and after trying
a significant portion of the combination of salts x hashes we discovered our first ‘real’ plain,
and a few hours later our second. With the discovery of our second hash we attempted to
find correlations between the original line numbers of the hash and salt to see if there was a
correlation between them, but we were unable to find one at the time, and though not clearly
answered we do not believe there is one. All-in-all the list was a difficult one to complete in
the given time-frame and might have gone better if we had either committed to our initial
thoughts, or were faster with discovering the XOR method to retrieve the original file.

2.7.1 General Approach

Our general approach to this list was spent analyzing and trying to come up with ideas. For
the file we tried some extractions and modifications to see if some type of steganography was
used to hide the file within another - but nothing ended up working on that front. When the
original song was discovered, the suggestion was made to compare the file to the original at
a bit level, but it was left at that and not further investigated (missed oppertunity). Once
the songs’ relevance was officially confirmed, interest came back to the list and strides were
made in recovering the original file, yet no progress was made after for the simple reason:
nothing returned a ’quick’ result. Trying out a lot of different things from cutting up the
hash to rotating it, modifying the way encode64 vs base64 worked within the hash function
to see if the 'mixing’ and ’shaking’ of the encode64 function in PHPASS had anything to do
with the hints from the hashes. Trying different permutations of H / P and rounds from up
to 10 but without a single hit throughout our attempts we were ultimately just stabbing in
the dark.

2.7.2 Timeline

This section gives an overview of the timeline, listing (major) events with time notation as
HH:MM.

e 00:00 Contest Starts

e (00:16 Initial 1650 hashes extracted by penguinkeeper

e (00:30 First Blood by w00dsman

e (01:31 Discovery of the original soundcloud song by penguinkeeper

e 19:16 CSP Released hint with song

e 19:22 Song mp3 was first shared

e 20:03 Discovery of bit similarity in songs by Vavaldi

e 20:12 20040 hashes extracted via XOR, by Vavaldi

e 20:13 ’Second’ Blood by penguinkeeper with new plains

e 41:47 Second hint with ”mix/shake salt order” and 1 correct hash+salt combination

e 43:19 First real crack ’suilek’ by Jimmalina

Page 9

Crack The Con 2022 Contest write-up HashMob.net

e 47:06 Second real crack ’iauuku’ by Jimmalina

e 48:00 Contest Ends

2.7.3 Learning Points

The overall difficulty of the list was a bit too steep at 400,000,000 possible initial hashes with
relatively difficult plains. Once more plains are discovered, the list would get increasingly
easier as each found would eliminate 19,999 other hashes. Sharing the MP3 file with the team
sooner could’ve led to an earlier discovery of the XOR and subsequently given us more room
to take our time enumerating the salts.

2.7.4 Final note

A final note about this hashlist is that although it was difficult, it was also ingenious and fun
with the use of XOR to hide the original file but still have some hashes available to crack (be
it intentional or not), and the shifting of salts around. With a slight modification to the plain
distribution, algorithm or salt count (using duplicate salts) this hashlist could have been very
reasonable.

Page 10

Crack The Con 2022 Contest write-up HashMob.net
2.8 Gay Melanoma
Hashlist Plains Found First Blood Total
Gay Melanoma 1426 531 34 999

What a name, that surely can’t be right. Some of the first thoughts given by our members
on the list, suggesting it might be an anagram (which it was: ” Anomaly Game”). We never
truly discovered what was wrong with this list and simply went through it with sheer luck
by using wordlists and rules for the most part. The real solution - based on the after-party
discussion with a staff member of the contest - was that the hashes provided to us were off by
one or multiple bits/bytes. Hashcat can crack a portion of these hashes due to the method in
which it checks hashes and doesn’t require them to be perfect matches - but this has a limit.
During the contest we mostly threw it on the pile that the hashlist was hard and we were yet
to discover a pattern.

2.8.1 Learning Points

Our primary learning point for this is that we could have analyzed and compared the input
and output of correctly retrieved plaintexts to verify if they were completely correct.

2.9 HC Safe
Hashlist Plains Found First Blood Total
HC Safe 0 0 13 092

Although a lot of attempts were made, nothing stuck. In the end, even the hint given for
the hashlist turned out to be incorrect with the algorithm being listed as sha256. With the
solution being: keccak-512 with plains which were > 256 characters. These were picked from
places like 'Hashes.org Junk’ or heavily used the ’d’ rule. When approaching this hashlist
we tried many different forms and iterations of SHA256.* and SHA512.* with -b -e -i -g and
more within MDXFind, with the idea that the plaintexts might be unicode encoded, rotated or
truncated to the point where hashcat would not properly recognize them. The (128 character)
hashes were split up into two sections of 64 characters and each ran individually as different
forms of SHA256. Eventually we spent little time on it with the knowledge that other teams
did not get any plains either, and that the list itself was worth relatively few points.

2.9.1 Learning Points

Our primary learning point for this is that we could have ran our most common wordlists on all
algorithms matching the length of the hash which would ultimately include keccak-512.

Page 11

Crack The Con 2022 Contest write-up HashMob.net

2.10 he-ran-somewhere

Hashlist Plains Found First Blood Total
he-ran-somewhere 6 121 2 336 20 682

The algorithm was initially presumed to be PBKDF2-sha256 (Django, 10000) due to our
familiarity with the algorithm but was corrected to match Python’s passlib pbkdf2-sha256
(20300). The plains we initially discovered pertained to what seemed to be gaming focused
things involving minecraft, political persons and ransomware names. Discovering the reference
to the joke and understandings its concept (being: he ransomware) we started to scrape
different sources for ransomware names and running them against the list, slowly getting more
hits but still missing a significant portion of founds. Our first breakthrough in discovering
how to attack this list was the realization that the hashlist was sorted by the alphabetical
value of the plaintext. This meant that we could focus our efforts on specific prefixes or subset
of plains. However with very little plains discovered, we were unable to fully start utilizing
the plains. This picked up more later when we started grabbing the already cracked plains
and 3-5 hashes above and below that plain and running an association attack with rules. The
below image shows an example of how our early file looked with plains discovered. This view
of the file was generated by a special API endpoint on our collaboration server which we used
in a later stage to help automatically create candidates but essentially takes the original file
and appends :<plain> to the matching hash.

Small insight on association attacks

Association attacks are precision based attacks instead of brute force. Instead of checking a
thousand, million or billion combinations against a single hash you check a single candidate
which you know or assume to be relevant to the targeted hash. A salted hashlist requires
the program to re-hash every plaintext you wish to try for each unique salt (this is what
makes salted hashes difficult). By using an association attack you are essentially limiting
the attempts to 1 plaintext per 1 hash. The keyspace of the attacks are as follow where p
is amount of plaintexts in the wordlist, ¢ is the amount of hashes and s is the amount of
salts:

e Dictionary attack on MD5: px ¢
e Dictionary attack on Salted MD5: p * s * ¢
e Association attack on Salted MD5: 1

With association attacks (-a9 in hashcat) only one plaintext or ’candidate’ is tried for every
hash. This is then multiplied by the amount of rules used. Currently, only the latest beta
of Hashcat supports rules on association attacks, therefore it will be part of hashcat 6.2.6 or
6.3.

Page 12

Crack The Con 2022 Contest write-up HashMob.net

8519 $pbkdf2-sha256$1000%6r33/r937j2HUGgNkTIeSw$12/40TnpoMkKviT xuw6haghAhbaViNCh/65rebaatelis :
8528| $pbkdf2-sha256$1008%k FKek3I10KSVkjDEGWLX . gbYewPhTONVNItYVth . . FQKsDEGL2JGxzY7BxCiDZIMTA: -+
8521| $pbkdf2-sha256$1008%vVFKeWSNIYTQ2vv/v5dyrgyPRFgTI . Fxu0iMSmQ6iKXKDX ttn518F81iB2MFCXS : +
8522 $pbkdf2-sha256$1000%x1§rvTfGGMNAbE35H2Ms 503 YvAe80BOCCPLGIGOMB8cB8tceBZFWVs09VwTobCsEK3E : encryptol ISt
8523| $pbkdf2-sha256$1008%svZ . D6GA1rIW6] 1HyBmiVASXoqE T Tm . 46UdGOYx9XECi8N .0 . weMPsDnwZkOFSLP7Q:
8524 $pbkdf2-sha256$1008%0vS . 1zrn/P9/792bM6a0dg$I1T1ixRKxDeIDIRhnsYultF /po9t1C3 . wZli2s2deuGCA:
8525| $pbkdf2-sha256$1000%07r3nnNu7Z3znpNyjpGydg$7nVL/kC5ngBhngpbEBlyqgF . 21mNg2X3LLZixSpdwZv4: Encryptojjs1980L
8526| $pbkdf2-sha256$1008%uleqtXaOEeK8FuwKgNIYQog$7IhLTTa8] Y8DODZDBEQMaEBS iN7kLKd/4U3FroiaLa: -
8527 $pbkdf2-sha256$1000%$977X2nsPobShis1aKMUaIEQ$ ruOkkudQMOF LIe20vhL69wHWTqVCBNsArOTFVB2P1il: Encryptojjs98et
8528| $pbkdf2-sha256$1000$qpUyIqTUOUEBFOLT . b. Xkg$LdhVekMAGPOQ/ IriNVZIPiZIkQoxRDNC3LYr . 110DZ0:
8529 $pbkdf2-sha256%$1808%2Nub@1rl OWcM4AXxvba2VEg$MwgqVUUFPgBGx90imUVFmOLT1EY9 /HT1PsLb6srhPCve:
8538| $pbkdf2-sha256$1000%.79zr1XKea.111LgHa001g$IGeYoxey7E8Sht IpdARIKZXF gWPtUKBAYIXQ . 8pollys
8531| $pbkdf2-sha256$1000%xXjPmVPKmbOWMmMZMS cmZkw$SAjwaopzk3oprquDZkQZQD1escKDyUgMXLCGROT3KSA:
8532| $pbkdf2-sha256$1008%F 2Ks tRYCWLh3DsGYMwYghA$TMZkImyZFAgej4kdmlaAUltX11t5XFkQFiitPcyHFve:
8533| $pbkdf2-sha256$1000%CKGUstaac26t9X5v7F1FCwdg59v5qYzOLGI . RhpMC1CxTSpRZINT ytX/yIHdxTjaMA:
8534 $pbkdf2-sha256$1000%RohR6h1jzDkHYGut SRxDKASHDZ0eVYD7DneKz sxW2rSuuEbrYmdeSS2vinlUg7 9N4biv ;
8535| $pbkdf2-sha256%$10808%VIpx7 r@XuphTyh1DgFXKGQ$5V70eAS47AngrejBD7C8FBUGH . a3rh1YnQ8W7U9aDuw
8536| $pbkdf2-sha256$1000%C6F0buldgqSVyzhnjvFdqTQ$aN9aBi8shbl3SNpvTPeIglHFwdUo3bNyr@Imtb33Udo:
8537| $pbkdf2-sha256$1000%LmUsxdh7L . UcIwQgRIjxXgbFjb8ZzC8tgditQ1bxQMBn7 s TVbwVABWThcl5wFipPFs
8538| $pbkdf2-sha256$10088%/79TSul9r3UuhdD631urdQ$HA3XUrSy cLDZOnDXbKAL uFe8580MYpuC . hSBCILCALQ:
8539 $pbkdf2-sha256$1000%08e4FwKgVCoF IOR87987Zw$ 1XACERgVIG18BIvorduMZg9/3N1gCepol LpN29NWsTU
8548 $pbkdf2-sha256$1000%0VprLQXAmI0y11IgrdUadwdo/lyod CRNDACNmoHWbAYvaBmej1P1pZWyyQsI.N. .L4:Enigmal
8541 $pbkdf2-sha256$1008%h9B6771XSqnVGgPAmIPSugbwl WIS eQSKYhteGmtS2] /fDx/qIGReRT1X75u771Guw: Enigmas541
8542 $pbkdf2-sha256$1000%PieEEEIoRajVGiPk/F/rfQ$eeRxkbeuV48Pghs36Aj5UBY2Bb3vLCrkMU41 /@VT1Z4 : &
8543| $pbkdf2-sha256$1000$RQhBCOHS /582 gQAYEYINQ$0D . FIoUmkGy7p3c8dQazY4pTjObX11hI1n5hfuwdyoHI : &
8544| $pbkdf2-sha256$1088$dE5ICaEBRgihdC71XCul 1A%y FrliRk33gN8GSBGIPYej6GVAVUX2NiuVElidlkLH9ido : Enim3at
8545 $pbkdf2-sha256$1000%1jLmPGTMGWMsJaTO3]snZA%ghX180KdDCSArWUYZWQWEWXo/STcBHSK s . XottVAnQu: &
8546 $pbkdf2-sha256$1000%gDAmxFhrzXmPEWIMy TknxA$4FQGI6 . . co3VP/ZdHOVBZzhMHUNSM/ TQmmXmQuRjIZC8:
8547| $pbkdf2- sha256$1008%L alUMgYUQmhNaU2p9Z4T4g$3PBuP fyux/B/K6tPOEotk2usH UXFMBs MENV2Kyic :
8548| $pbkdf2-sha256$1000%UMoZQ6i1FkIIyRmDcC51bA%dinD/3A1rcYCz5g788kkR5qVUOUxNaIuH7 10ABRKSN4 : &
8549| $pbkdf2-sha256$1000%g/A . ByBEiDFGKIWwlhqitA$821BYI3sKtYpvxrzRsQKFRABVWIVINUhHVGpPVIOTus : -

&

"

A

&

B i

8558 $pbkdf2-sha256$1808%gzCm9L4XYmzNuTcmS5Dxnra$sS20nEHS0g1DUUBmrmBF ZQYmhRcRpfibgemH,/ ixY7.Y:
8551| $pbkdf2-sha256$1000%USplDCHKXEsIYax1jtGaMuduyMYmUVEKG1OtE7vbLAqTRHAjiSXzRB25MHCKKW,/ 3Lo:
8552| $pbkdf2-sha256$1000% . F//fu/BuF cKYcw559w7BwiKIePip7Maj6666drQniT2mI ibViiuHk402T0. 8uMMa54 :
8553| $pbkdf2-sha256%$1808%72z1H1i L G2VkopRUipFQKACA$ jMKdguBnPMTzuVgI 7L tPloNsqDF955y12/ TGux6770:
8554 $pbkdf2-sha256$1000%$Y0wdABDIufe . 1xJiDCEEAASYME8qz INQ3eednw3UaMHu,/ 6,/ yCZZPet1kkNTe365zqE : Enjey

8555 $pbkdf2-sha256$1000%uNc6BADW3rtXqrU2phSiFASsBXVxYuXHHWG4IVIY3x8pwulbnQ250xj0IP9CbxPalg:
2EER| €nhlAdFI-chaIRad180ALAET nn7 vl LY AandDAGRFuPNERMAhGWE I T RS e NAA RaRWMmRNRLANNEknan T+ 17 AnhR 1T - L

Our aim and method was straightforward:
1. Find an already recovered plaintext hash in the original list.
2. Take the N hashes above and N hashes below the found’ hash in the original file.

3. Create an association attack hash and candidate for those hashes with the candidate
being the plaintext of the previously found hash

4. Run the association attack with rules to find plains similar to the one found initially
5. Repeat

Large strides were made with this hashlist when a script was released which would automate
this process up to the last step and basically give every team member the ability to run
their own rules and modifications on the limited candidates, instead of on everything. This
version of the script was later improved upon to reduce the amount of duplicate founds and
further optimize workflow of members. The script below demonstrates how we generated our
files.

Page 13

Crack The Con 2022 Contest write-up HashMob.net

import requests
import json

api_key = "API_KEY_OF_USER"

def fetch_analytics():

headers = {"api-key": api_key}

r = requests.get(
’https://$domain$/api/vi/hashlist/5/analytics’,
headers=headers

)

return r.json ()

left_hashes = []

sorted_data {}

candidate_set = []

data = fetch_analytics()[’data’]

f = open("ransom_founds_overview.txt", "w+")
for key in data:
sorted_datal[int (key)] = datalkey]
if datalkey] [’plain’] is None:
f.write(datalkey] [’hash’] + ":\n")
left_hashes.append(datal[key] [’hash’])
else:
f.write(datalkey] [’hash’] + ":" + datalkey][’plain’] + "\n")
f.close ()
for i in range(l, len(sorted_data)+1):
if sorted_datal[i][’plain’] is not None:
for j in range(-10,10,1):
if i+j < 1: continue
if i+j > len(sorted_data): continue
if j == 0: continue

if (sorted_datal[i+j] [’hash’] in left_hashes):
candidate_set.append ({
"hash": sorted_datal[i+j][’hash’],
"plain": sorted_datal[i] [’plain’]

i)
f = open("ransom_founds_hashes.txt", "w+")
g = open("ransom_founds_candidates.txt", "w+")
h = open("ransom_founds_combo.txt", "w+")

for _set in candidate_set:
f.write(_set[’hash’] + "\n")
g.write(_set[’plain’] + "\n")
h.write(_set[’hash’] + ":" + _set[’plain’] + "\n")
f.close()
g.close ()
h.close ()

The following line indicates how we specified to grab the 10 lines before and 10 lines after the
intended hashlist. Initially we kept this at -50 and +50 to ensure that we didn’t immediately
miss out on hashes. The longer our attacks continued, the more we slimmed this down to 15,
10 and 5.

Page 14

Crack The Con 2022 Contest write-up HashMob.net

for j in range(-10,10,1):

In the end our list ended up looking similar to the following image, where it is clearly noticeable
how the list was generated and given more time I am certain we could have recovered a larger
portion of hashes.

FEPEYS

159843
15944
159845
15946
15847
15948
15949
15950
15951
15952
15953

PPURLL £ SHOL IUPLUUU PG -« L ALY LI MLy .

$pbkdf2-sha256%1000%BYDQuleK8ZoTwnjv/X9vTQ$yE6ROTZX72x57vhfXRIWekF98q0008nHjAytIPZG7LA
$pbkdf2-sha256$1600%ulcqxVhLybk3IkRIEdO75w$zkqrYC3GBGVsK1zD3/tSVXjC7Ge@5TINarvgl SRXS . 9g:
$pbkdf2-sha256%1000%FOKIMab@3ts7h1CqFaKetg$Vvm/DXBDX8GigbkS0gC537xNk06x9Vm2gD/ nksdUaFGM:
¢pbkdf2-sha256$10080PwdgrHWutXZ0i FE . BEAUTg$FeZ71NS6880Lt5]12uN/bCrZPZFwvuE fAxFBcuQkjuke:
$pbkdf2-sha256%1000%HY0WVqpl713L2XuPUSql1A$LQIoWQTjbBZaBT3ZeGye8AhDGlz3aqYxwlF8kZA7IBw:
$pbkdf2-sha256$1600%$r1UKwdibs7bli.t.7F6KaVg$jr6jk.67XerhfkjsirsDYBwluzVQX1Ke2z1rSjvIved:
$pbkdf2-sha256%$1000%i/H.nxNijBGidI7RWgshpA$oUtg9otgdAn3t/8Wakt6EqselHUIQI2gUWcpc3946wc:
$pbkdf2-sha256$1600%upfSOoeQlmas9dabg7BWEg$EaSCcPw)S. 22 TAnk4KkBxQYCBmRtzyo . cPxITweSgf8:
$pbkdf2-sha256%$1000%LYVQa02RkhICoPS. d45RCg$nXnkQWXBgGGCd5zpQpDSF3aZ. S6xh . WdwSxpzHcxN6s :
¢pbkdf2-sha256$1880$kRICINGa8z7HeI9xTqn1Xg$2Z TTiETE7pS /bAbICKKHUDD Sy TAOKYVY jmAOi F5vOY :
$pbkdf2-sha256%$1000%1LgXMoYQwignZCyFcM5Zaw$yPEQCEGXgX3Z/dCsV1kOoFx. skFmNS4TH2p2XFKn/ pk:

AU I BRI Y WU L LG I £ L L LS LD L VL S UYL LI U L .

:RA1977%

+
s

+

RABA4L

RAAY

RAAGBB9S
RAAB206V
RAA191421%

RAA 3ncryptordld
s

€
s

RAA
RAA

15954/
15955
15956
15957
15958
15959
15968
15961
15962
15963
15964/
15965
15966
15967
15968
15969
15978
15971
15972
15973
15974
15975
15976
15977

$pbkdf2-sha256$1600%$tDbG2Nt7LyVkrLXW. h8jZA%ocoWZpMaclIHHcvzQE5RTI2F cKRVH/TODZ5rBaral@Hc :
$pbkdf2-sha256%$1000%tTaGcC41BCAEAIDQ2pvzTg$yMIMPrq3R960Udmg1M] /GhwnoeStHW2 Tc11FELx/fMU:
$pbkdf2-sha256$1600$HQMAYOWIp7S2tnbOudcaQw$. BmeOPoDOuxsLXoBFBrcIijhFEo6vIBFheYnycIXVak:
$pbkdf2-sha256%$1000%d64VIuTE/98bAGAUIiQk5ASonzKEL3ZijmjaAmyInGol3vkKELIpjPzdLYn77mObkw:
¢pbkdf2-sha256$1@080%1RrDMFPKGCPA/ z . nNKZUEg$x38hPk i ZnImlPHIdRKUoPWrzZr . 61 VV258Ht T@3MqeA :
$pbkdf2-sha256$1000%ztkbYwxBqIXS0s fYe29NgQUwCZQk6zQRVwaADsQezKFAhHSIANAKXpfl. wchTeV.Y:
$pbkdf2-sha256$1600%$UoqRcg7BGKPB/ r8Xot T6fwbxdKYRS6 . sb7MHI1hXz3xyAoNwjqdc . 9Y7TubelMhZSE
$pbkdf2-sha256%$1000%WWstReh9DyFk7F3rXct5Lw$ptMIIRWMuwCSDPOfebexBr5THr100RCE . kzBu8cZUNC:
$pbkdf2-sha256$1600$Ga00dm7NWUUIsVYKASDE2A$BkuBhHPr4HNFDR . 8tHI1TZfZyKms7Lav.tzzZWuilRc:
$pbkdf2-sha256%$1000%SAKBAKCOVKkppDUF Iy fnfuw$@zaiMBmVgOXmm/ mnp2cu2lZ4NvcoMYghSvaG/GmgdYo :
$pbkdf2-sha256$1600%.R.j1BKi1PK.dy61VEpJaQ$IIBPmSTwged Ixdx . j6F5m3USq61Z7gq5 L becvZPUGHaBs :
$pbkdf2-sha256%$1000%3xvjPACAIKRUag3h3DvHUASYYQspkGyTGx6tBCKIz3gv/iQzQr.tnLetiTRSpghowA:
$pbkdf2-sha256$1600$bGANgfCeF 2KMk TKGEHAVBQSWT 28FvFtZeulWYiy5vi29gaqayfZOPPS. 1PvprQ.xTTY:
$pbkdf2-sha256%1000%1RICWN7XwvhvPe. F2IMAQ$Bir4EI35ZpeAHUSHYQk TkrbdR1xX9/ iyxtdikt2X090Q:
$pbkdf2-sha256$1600%$uZdSivHe . x8DwL gXwniv1Q$bwTfal061CHpSQEp28GZ cllePDIpRWQMABBWpFQDcQmT :
$pbkdf2-sha256%$1000%V.p9r7X2/h/D0Eeotbb2Hg$sTKGKCBIXyp8DtPIH. 1ztHPeEvyzzpsHQFnRz1UWVIE
$pbkdf2-sha256$1600$mIPEvIcalyCktPYewljrPQ$xSnighgKgX.oF@DzVY . q/No.v7IJdXVjAGb7sDbh4x8:
$pbkdf2-sha256%1000%Ruh9b81Z622HOFoLIWSMEQ$HES/ ablmQWcUsWGENjkqfbRUOCLhmxB . TEEGS].5210:
$pbkdf2-sha256$1600$b815rSWyVspZizFmrIVSyg$j6BECLW/TIPREF codNsy7m2UCCzLGGBSLFL7dplUpc:
$pbkdf2-sha256%1000%vrclWYiwlSNzb. //fmOP&63w$XFqTBo8LsRS0u. howCAcazUCpuTXw3wwuN1bly 2DWEC
$pbkdf2-sha256$1600$PGfM.Z/T2hsDwDiHETIQgg$Watkj6VaKsIFsBBpaPZTEebd3PYREUxGylqjfSeoaxU:
$pbkdf2-sha256%1000%hrB2jjGGsJaSkt]aizFGgA$mcNOtOEDTgz 1HiqocK8nmmKNOQ9 . v475ZP44YNaxtsw:
¢pbkdf2-sha256$1800$Y8x713H02dubeSpT6] 1nrA$BE2awv] FDtPi5IWFRIMEQCY tYnTkrAuOWGaydXjGYOE :
$pbkdf2-sha256%$1000%FsL4/9/7n/0.txaCMAYAIASpzLavA3nimAl8LXS14Pxt180GALz0IN7KlzbceYy/ . 4:

enc3ryptorsd
enc9yptor3'

RAA
RAA
RAA encryptorit
RAAENCRYPTOR+

RAA encryptorl3544
RAA encryptor20286+
RAA encryptor3.s'
RAA

encrypt@rZl
encryptog6623+

encryptors193+
s
+
s
+
s
+

RAA
RAA

encryptorerl23d
endryptoret

RAA ncryptorer123l

2.10.1 General Approach

Our initial approach to this hashlist was to discover as many plaintexts as possible though
the use of small wordlists like Hashmob Combined micro and Hashmob Combined mini (from
Hashmob.net), getting a large chunk of the base words. When we discovered the relevance
in alphabetical order we saw the potential for more optimized attacks and were later able to
utilize this. Seeing how many points this list was worth the last few hours was spent by all
members running different types of attacks and rules. Digit appends were found to be one
of the most effective ones and rule-stacking with debug-mode/debug-file enabled was utilized
heavily to help identify patterns. These files were later exchanged, optimized and sorted to
then be re-ran with stacked rules like nsa64 and best64. Additionally the Gramify tool was
used with character-based n-grams to create popular suffixes within the file.

Page 15

Crack The Con 2022 Contest write-up HashMob.net

2.10.2 Timeline

This section gives an overview of the timeline, listing (major) events with time notation as
HH:MM.

e 00:00 Contest Starts

e (00:03 First Blood

e 00:17 Reference found to the joke made at #PentestHackfestEU by clem9669

e 26:59 Discovery of (mostly) alphabetically ordered hashlist by plaintext by Vavaldi
e 40:41 First -a9 attack building script with -20, 20 range released by Vavaldi

e 48:00 Contest Ends

2.10.3 Learning Points

Our main learning point for this hashlist was that we could have had a slightly better focus
on the hashlist and be faster to note it was not sorted the same way as other lists (which
was alphabetically by hash). Unfortunately hashtopolis does not support association attacks
(yet), so making use our combined hardware was limited. We attempted to run some wordlist
attacks with rules based on the founds (small amount), which yielded in a few cracks but
limited amounts.

Page 16

Crack The Con 2022 Contest write-up HashMob.net

2.11 Numbers™3

Hashlist Plains Found First Blood Total
numbers”3 20 476 18 916 33 000

numbersnumbersnumbers (Numbers”3) was an MD5-based list with many mixes of iterations.
The plaintexts were built up of three digits in front of passwords followed by the passwords,
often (but not always) appended with numbers. After running MD5 for a short period with
rules we discovered the similarity in prefix and ended up running ?d?d0 prefix rules to discover
more plaintexts. As time went on we discovered a correlation between the iteration counts and
prefixes and were able to further hone in on the larger MD5 iteration counts. We primarily
utilized MDXFind for this with the -i flag.

2.11.1 General Approach

Our general approach to this list was making use of the rules and derived prefix rules to
target the hashlists. With the finding of iteration counts we analyzed the plains and found a
correlation between the iteration count and prefixes which we could then use to further target
the larger iteration counts more effectively.

2.11.2 Timeline

This section gives an overview of the timeline, listing (major) events with time notation as
HH:MM.

e 00:00 Contest Starts

e 00:17 First pattern discovered with 7d?d0 prefix by _cin

e 08:16 First indication of MD5x2 or more being used by Shooter3k

e (8:22 First indication of MDb5x3 or more being used by Shooter3k

e 08:25 First indication of MD5x4 being used by w00dsman

e 08:28 First indication of MD5x7 being used by w00dsman

e (8:31 First indication of MD5x9 and less being used by w0O0dsman

e 17:13 First indication of MD5x141 and less being used by Vavaldi

e 17:15 First indication of MD5x240 and less being used by Vavaldi

e 17:37 First indication of MD5x897 and less being used by _cin and Vavaldi
e 17:45 First indication of MD5x4140 and less being used by Shooter3k

e 18:44 First indication of MD5x21147 and less being used by Shooter3k

e 18:48 Realization that each iteration count of MD5 had specific prefixes by Vavaldi
e 41:12 Custom MDb5x4 to md5x199 Pure kernels for hashcat released by _cin
e 48:00 Contest Ends

Page 17

Crack The Con 2022 Contest write-up HashMob.net

2.11.3 Learning Points

The list ended up being built up with mathematical functions and popular number sequences,
something we did not discover until after the fact. The image below shows the sequences
used by the contest. When working on the list we could have better analyzed the iteration
counts of the hashlist to identify which specific iteration counts were being used and which
corresponding prefixes belonged to them.

N
@._9 for the numbers challenge, this is the iteration matrix along with their number sequences

7 11 13 17 19 23 29

3 5 8 34 35

5 15 52 21147
65 4609

Composite Numbers 4 1e 12 18

Abundant Numbers 12 1 36 : 54

Fortunate Numbers 3 5 23 17 Z 61

Semiperfect Numbers 6 12 24 28 : 42

Blum Integers 21 33 93

Highly Totient N. . 2 24

Polite Numbers 3 1e

Happy Numbers 1 23

Prime Numbers 2
Fibonacci Numbers 1
Bell Numbers 1

1

Cullen Numbers

O W E P Ww

00

Page 18

Crack The Con 2022 Contest write-up HashMob.net

2.12 Summary

All in all, it was a very good experience for everyone to participate in this contest and many
are already looking forward to participating in the next; competing against some of the same
teams hopefully. Our communication and analytical skills are definitely a factor which can
use some improvement. Although the majority of users have quite a bit of experience in
hash cracking, many aren’t used to the non-standard format of contests and still have to get
familiar with some of the concepts presented to them.

Page 19

Chapter 3

A Free Lesson

Thank you for reading through the write-up and getting to this point. Before we continue on
with the Street Team, I wanted to share with you an attack method that I just came to realize,
very few people are aware of, that can help you quickly harvest founds with little effort. It’s
called —loopback, some of you might already by familiar with this flag, yet I suggest you keep
reading. Hashcat can make use of rules, simple additions, subtractions, transpositions or
other modifications to a word in a wordlist attack, when using these we refer to it as a 'rule
attack’. An example of this is the 1 rule which makes all letters lowercase in a word, or the
ila which would ”i”, insert a letter "a” after the ”1”st character of the word. Modifying the
word ”password” to "paassword”. When you've ran some rule attacks and discovered some
plaintexts you can introduce —loopback to your rule attack to not only run your rule attack
on your wordlist, but also on all your previously found plaintexts, which means you don’t
have to extract them and then run rules on them. This saves time, and if your loopback finds
any new hits, it’ll start another loopback with those new founds and so on and so forth until
it’s ran all your rules on the last few plains with no new hits and then stops. With the right
rules this can be an incredibly powerful attack and I highly recommend trying it with some
of our community’s rules (check hashmob.net for accurate suggestions). We recommend rules
like fordy10k, fordy50k, fordyv2, Robot_MyFavorite and top_5000 to top_250.

Now for the thing most people aren’t aware of: When you just want to run some different rules
on your found plains you might extract them and then run rules on them but instead, what
you can do is create a new .txt file and name it empty.txt. Put nothing in it, and specify it as
wordlist when doing a rule attack with loopback. Hashcat will skip over the empty wordlist
and instantly start your loopback attack. This means you can run a lot of different rules over
your found plains to try and abuse similarities between already found plaintexts without any
drawback or increased keyspace you’d get from running —loopback with an extract wordlist,
or with running another (potentially small) wordlist.

20

Chapter 4

Street Team write-up

4.1 The Preparation

In preparation of the contest the members of the Street team tried to recover as many of the
Street hashes as possible. Partially for fun, partially to see what the CSP team had in store for
them. The Street teams were given one set of SHA1 hashes, and one set of md5crypt hashes.
Some of them were entirely new to HashMob or hash cracking itself so some orientation was
required. The tools and scripts developed by the Pro teams were actively shared with them
and for the duration of the preparation multiple pointers and tips were given to help guide
them to perform more optimized attacks.

4.2 The Hardware

The Street team had an extremely powerful show of hardware, exceeding the overall power
of the pro team with a grand total of 27 graphic cards, with a total of 66 CPU cores.

10x 3080

8x 2080 Ti 1x 2060

1x 6900 XT

2x 1060

3x 6800 XT 2x 3060

21

Crack The Con 2022 Contest write-up HashMob.net

4.3 The Infamous Lists & Results

The lists presented to us for the 2022 CrackTheCon contest were made up of various al-
gorithms. We’ll go over each hashlist one at a time, discussing how we approached it,
what we found and the final conclusion. If you are interested in taking on the 2022 lists
yourself, I recommend stopping after this section. The lists we were offered were named:
637970686572636F6E, Challenge 1 up to Challenge 9, Archives. The Archives challenges re-
fer to the two encrypted archives from which hashed passwords could be extracted. Only one
of these was successfully opened which contained the Challenge 7 hashes.

HashMob finished in eighth place with a total of 829 236 points. With the first place by ’toil’
having 2 159 197 points.

Hashlist Plains Found First Blood Total
637970686572636F6E 46 973 0 79 975
Challenge 1 11 721 2 037 24 063
Challenge 2 0 0 11 334
Challenge 3 32 871 412 95 004
Challenge 4 7 661 16 25 180
Challenge 5 0 0 6 454
Challenge 6 159 61 43 609
Challenge 7 122 999 12 554 239 127
Challenge 8 19 277 25 ?
Challenge 9 188 74 12 180
Archives 2 0 2

Page 22

Crack The Con 2022 Contest write-up HashMob.net

4.4 637970686572636F6E

Hashlist Plains Found First Blood Total
637970686572636F6E 46 973 0 79 975

4.4.1 Identification

The general approach was to use hashcat --identify 637970686572636F6E. txt to list out
all possible hash types. After a list of hash modes was obtained, we moved to hit-n-trial
approach to identify the hash type by using hashcat dictionary attack mode with rockyou.txt
as a base dictionary. As soon as we got more than 2 plains recovered, we confirmed the hash
type for the challenge. For this particular challenge the use of SHA1 was confirmed.

4.4.2 Attack Approach

At very first, we tried basic dictionary attack with popular wordlists rockyou.txt and crack-
station.txt to recover as much as possible before moving onto advanced attack methods. Once
we had sufficient plains recovered and dictionaries were exhausted, we analyzed the pattern
found in them. The majority of words were comprised of lowercase letters and numerical
characters. We generated mask in combinations of 7d and 71 . Apart from mask based
attacks, we restarted dictionary based attacks with new found plains included and adding in
popular rules.

e Attack modes used: Dictionary (with rules) 4+ loopback, Masked brute-force
e Wordlists used: rockyou.txt, crackstation.txt
e Rules used: pantagrule.one.royce.rule, leetspeak.rule, nsa64.rule

e Mask generator used: maskgen

4.4.3 Learning Points

Initially we considered the hashes to be plain MD5 and started attacking, which led to
wastage of some of our time. When the actual hash type was identified, things were resolved
faster, hence confirming identification before throwing resources and time at a challenge is
wiser.

Page 23

Crack The Con 2022 Contest write-up HashMob.net

4.5 Challenge 1

Hashlist Plains Found First Blood Total
Challenge 1 11 721 2 037 24 063

4.5.1 Identification

The general approach was to use hashcat --identify Challengel.txt to list out all pos-
sible hash types. After a list of hash modes was obtained, we moved to hit-n-trial approach
to identify the hash type by using hashcat dictionary attack mode with rockyou.txt as a base
dictionary. As soon as we got more than 2 plains recovered, we confirmed the hash type for
the challenge. For this particular challenge the use of MD5x2 was confirmed.

4.5.2 Attack Approach

At very first, we tried basic dictionary attack with popular wordlists rockyou.txt and crack-
station.txt to recover as much as possible before moving onto advanced attack methods. Once
we had sufficient plains recovered and dictionaries were exhausted, we analyzed the pattern
found in them. The majority of words were comprised of lowercase letters and numerical
characters. We generated mask in combinations of 7d and 71 . Apart from mask based
attacks, we restarted dictionary based attacks with new found plains included and adding in
popular rules.

o Attack modes used: Dictionary (with rules) + loopback, Masked brute-force
e Wordlists used: rockyou.txt, crackstation.txt
e Rules used: pantagrule.one.royce.rule, leetspeak.rule, nsa64.rule

e Mask generator used: maskgen

4.5.3 Learning Points

Initially we considered the hashes to be plain MD5 and started attacking, which led to
wastage of some of our time. When the actual hash type was identified, things were resolved
faster, hence confirming identification before throwing resources and time at a challenge is
wiser.

4.6 Challenge 2

Hashlist Plains Found First Blood Total
Challenge 2 0 0 11 334

4.6.1 Identification

We were not able to identify the hash type for this challenge. We used the approach simi-
lar to Challengel for identification and hence failed. The hash type was revealed after the
competition, turned out to be md5(md5 (md5 (md5 (md5 (pass))))), which is not available in
Hashcat.

Page 24

Crack The Con 2022 Contest write-up HashMob.net

4.6.2 Learning Points

Don’t limit testing to a single set of software. If one tool exhausts, try similar tools and tinker
with their available options.

4.7 Challenge 3

Hashlist Plains Found First Blood Total
Challenge 3 32 871 412 95 004

4.7.1 Identification

The general approach was to use hashcat --identify Challenge3.txt to list out all pos-
sible hash types. After a list of hash modes was obtained, we moved to hit-n-trial approach
to identify the hash type by using hashcat dictionary attack mode with rockyou.txt as a base
dictionary. As soon as we got more than 2 plains recovered, we confirmed the hash type for
the challenge. For this particular challenge the use of SHA3-512 was confirmed.

4.7.2 Attack Approach

We kept the same attack approach, i.e. recover partially using basic wordlists and rules,
analyze and proceed to advanced attacks. The pattern was identified as names of places and
people.

e Attack modes used: Dictionary (with rules) 4+ loopback, Masked brute-force
e Wordlists used: rockyou.txt, crackstation.txt
e Rules used: pantagrule.one.royce.rule, TOX1cvl.rule, leetspeak.rule, nsa64.rule

e Mask generator used: maskgen

4.7.3 Learning Points

Increasing the scope of wordlists, and improving pattern recognition helps in narrowing down
the target wordlist and recovers larger number of plains in less time.

4.8 Challenge 4

Hashlist Plains Found First Blood Total
Challenge 4 7 661 16 25 180

4.8.1 Identification

The general approach was to use hashcat --identify Challenge4.txt to list out all pos-
sible hash types. After a list of hash modes was obtained, we moved to hit-n-trial approach
to identify the hash type by using hashcat dictionary attack mode with rockyou.txt as a base
dictionary. As soon as we got more than 2 plains recovered, we confirmed the hash type for the
challenge. For this particular challenge the use of SHA256 (MD5 ($pass)) was confirmed.

Page 25

Crack The Con 2022 Contest write-up HashMob.net

4.8.2 Attack Approach

We kept the same attack approach, i.e. recover partially using basic wordlists and rules, ana-
lyze and proceed to advanced attacks. The pattern was identified as permutation of the word
crackthecon2022 along with other words. We restarted attacks with custom charset. -1
cCrRaAkKtThHeEoOnN7d?s and incremental mask 7171717171717171 71717171 from mini-
mum length 6.

Attack modes used: Dictionary (with rules) 4+ loopback, Masked brute-force

Wordlists used: rockyou.txt, crackstation.txt

Rules used: pantagrule.one.royce.rule, TOX1cvl.rule, leetspeak.rule, nsa64.rule

Mask generator used: Manual

4.8.3 Learning Points

Improvement in analysis is needed. The actual plains were list of asteroids mixed with names
of cars. Those “other” words.

4.9 Challenge 5

Hashlist Plains Found First Blood Total
Challenge 5 0 0 6 454

4.9.1 Identification

The general approach was to use hashcat --identify Challenge5.txt to list out all pos-
sible hash types. After a list of hash modes was obtained, we moved to hit-n-trial approach
to identify the hash type by using hashcat dictionary attack mode with rockyou.txt as a base
dictionary. This ultimately failed due to the SHA256 (SHA1 ($PASS)) algorithm not being part
of hashcat. The algorithm was revealed to us after the end of the contest by the participating
staff.

4.9.2 Learning Points

Don’t limit testing to a single set of software. If one tool exhausts, try similar tools and tinker
with their available options.

4.10 Challenge 6

Hashlist Plains Found First Blood Total
Challenge 6 159 61 43 609

4.10.1 Identification

We did not try to recognize the hash types for this challenge until late in the challenge. The
tweet by organizers hinted this challenge contains 5 types of hashes. With approach similar
to Challengel, we were able to successfully identify all the hash types.

Page 26

Crack The Con 2022 Contest write-up HashMob.net

e md5($salt.md5($pass))

e md5($salt.$pass.$salt)

e md5(md5($pass) .md5($salt))
e md5($salt.md5($salt.$pass))

e md5($salt.md5($pass.$salt))

4.10.2 Attack Approach

Since we started this challenge later in the event, much analysis was not done and attacks
only comprising of basic wordlists and rulesets were done.

e Attack modes used: Dictionary (with rules) + loopback, Masked brute-force
e Wordlists used: rockyou.txt, crackstation.txt

e Rules used: pantagrule.one.royce.rule, TOX1cvl.rule, leetspeak.rule, nsa64.rule

4.11 Challenge 7

Hashlist Plains Found First Blood Total
Challenge 7 122 999 12 554 239 127

4.11.1 Identification

This challenge had a password protected ZIP file. The password was fairly non complex and
was recovered with basic wordlist. Upon extracting the contents of the zip file, a hash file
was provided. Applying identification techniques from Challengel, the hash was straight up
identified as NTLM.

Z1IP Password recovered: nopassword

4.11.2 Attack Approach

We kept the same attack approach, i.e. recover partially using basic wordlists and rules,
analyze and proceed to advanced attacks. The pattern was identified to be list of names of
fungi with some common names.

e Attack modes used: Dictionary (with rules) 4+ loopback, Masked brute-force
o Wordlists used: rockyou.txt, crackstation.txt, facebook-firstnames.txt

e Rules used: pantagrule.one.royce.rule, TOX1cvl.rule, leetspeak.rule, nsa64.rule

4.11.3 Learning Points

For fast hashes, such as NTLM, if wordlists are small, make sure to supply enough rules to
keep the GPUs fed up with works. A large workspace is to be created.

Page 27

Crack The Con 2022 Contest write-up HashMob.net

4.12 Challenge 8

Hashlist Plains Found First Blood Total
Challenge 8 19 277 25 ?

4.12.1 Identification

This challenge had a password protected RAR file. The password was fairly non complex and
was recovered with basic wordlist. Upon extracting the contents of the zip file, a hash file
was provided. Applying identification techniques from Challengel, the hash was straight up
identified as SHA2-512.

RAR Password recovered: 123456

4.12.2 Attack Approach

We kept the same attack approach, i.e. recover partially using basic wordlists and rules,
analyze and proceed to advanced attacks.

e Attack modes used: Dictionary (with rules) + loopback, Masked brute-force
e Wordlists used: rockyou.txt, crackstation.txt

e Rules used: pantagrule.one.royce.rule, TOX1cvl.rule, leetspeak.rule, nsa64.rule

4.13 Challenge 9

Hashlist Plains Found First Blood Total
Challenge 9 188 74 12 180

4.13.1 Identification

With the same approach as Challengel and the hash type was identified. Apache $apri$
MD5, md5aprl, MD5 (APR).

4.13.2 Attack Approach

We kept the same attack approach, i.e. recover partially using basic wordlists and rules, ana-
lyze and procced to advanced attacks. The pattern was identified as permutation of the word
crackthecon2022. We restarted attacks with custom charset -1 cCrRaAkKtThHeEoOnN7d?s
and incremental mask 717171717171717171717171 from minimum length of 6.

e Attack modes used: Dictionary (with rules) 4+ loopback, Masked brute-force
e Wordlists used: rockyou.txt, crackstation.txt
e Rules used: pantagrule.one.royce.rule, TOX1cvl.rule, leetspeak.rule, nsa64.rule

e Mask generator: Manual

Page 28

Crack The Con 2022 Contest write-up HashMob.net

4.14 Review from the Pro Team

As the Pro and Street teams operated independently, and the street team for the first time
in any capacity - the incentive was formed to provide constructive feedback to the Street
team. To this end two members of the Pro team (Vavaldi and penguinkeeper) looked at the
performance of the Street team and analyzed how their attacks were performed and how they
could have been improved. Although the street team received this feedback in full. This
writeup does not only seek to inform but also educate, and is therefore going to share some
of the points made by them on how their performance could be improved.

Initially the consensus was that the Street team could have been more active and commu-
nicative with few of the available discord channels having been used to discuss the lists and
progress and we wish that it was possible to include one or two pro players within the Street
team to help guide them in the right direction. The most important feedback is that rockyou
and best64 simply aren’t the best ways to attack a wordlist anymore, perhaps in 2009 but
not in 2022. To that end are included two short writeups from Vavaldi on how he was able
to beat the Street team in a short timeframe showing the attacks ran. This is taken out of
context of the discord so you’ll have to read between the lines a little :) . This was performed
on a single 3070 for hardware reference, so a team with less hardware could have performed
similar attacks in double the time and still fall within the contests’ timeframe. Though of
course point priority, algorithm identification time is not factored in. If users have questions
about these writeups you are free to email vavaldi@hashmob.net.

637970686572636F6E
You achieved 46 973 founds.

e HashMob.net Medium found wordlist attack with fordy 50k and —loopback gives us +33
535 and loopback gives us 44 258 total in <5 minutes.

e Empty wordlist + _nsa dive v2 with loopback gives us +2 029 for a total of 46 287 in
<1 minute

e Empty wordlist + Robot currentbestrules with loopback gives us +2 029 for a total of
50 767 in about 2 minutes

e Hashmob Combined full found wordlist with best64 and loopback gives us +2 644 for a
total of 53 411 in 4 minutes

e An iteration of empty wordlist with loopback and -g 10k gives us +1 667

e Empty Wordlist + RuleToRuleThemAll with loopback gives us +743 for a total of +55
821 in <30s

I’ll leave it there. I think that choosing the right wordlists and just spamming rules
at it for a few minutes could’ve given you a large initial coverage of the plains
(69.80%). Remember that HashMob has a lot of resources and guides available
from people who have done this for years so utilizing them correctly is often key
to getting a good start.

The above showcases how any team could have achieved around 56 000 founds in relatively
short time. This was a score only 9 out of 18 teams achieved, meaning that with 15 minutes

Page 29

Crack The Con 2022 Contest write-up HashMob.net

of runtime you could be in the top 50% when effectively building your attacks.
Challenge 1

This challenge was slightly more difficult with the Street team already performing well in this
category relative to others - yet we still wanted to show how we would tackle this list from a
zero knowledge perspective.

Today at 4 M
You achieved 11 721 founds

HashMob.net Large + Fordyv2 rules + loopback gives 5 572 and with loopback 6 412 . Since | used a large wordlist
with a lot of rules it took 42 minutes

Alternatively | could do this for a faster runtime (which is generally better)

Had I done HashMob medium + Fordy5e@k + loopback it would have given me "2 978" in about 2
minutes

An empty wordlist + rule stacking top_25@ and fordy5@k would give ~+1781° for "4 751°
total in about 7 minutes

An empty wordlist + Fordyv2 rules gives “+368 for "5 119 total in <1 minute

An empty wordlist + Robot_CurrentBestRules gives “+101° for "5 220" in <2 minutes

Brute force on -a3 PaPa?aPa?a’a -i resulted in "+11@ for "5 338 total in <2 minutes
Brute force on -a3 ?a?l?l?l?l?l?a?a -i resulted in ~+11@ for °5 330 total in <2 minutes
Which would bring you to a similar point as above in a shorter timeframe but with
different founds. You can then run another hashmob large with small ruleset to grab a few
extra base words

An empty wordlist + Robot_CurrentBestRules gives +165 within 2 minutes

An empty wordlist + _NSAKEY dive v2 gives +161 within 1 minutes

Noticing a lot of numbers in the founds so trying to do some rule stacking with ?d up to ?d?d?d?a append rules
generated with mp64 (maskprocessor in hashcat utils)

An Empty wordlist + fordy10k + short_append_1-4digit +71 within 1 minute, limited effectiveness (68e9 total)

An Empty wordlist + best64 + best64 + best64 +95 within 1 minute, limited effectiveness (696 total)

Looking through the newest founds and looking up their founds without special char or numbers | get a few hits on
bacteria so construct a list around it. For this | used but any taxonomy or
similar data will work, just make sure that the 2-3 hits you found are PART OF THE DATASET. | downloaded the MySQL
Bulk so that | could parse the data from the insert queries. | kept original casing so that the | rule could do its magic.

Page 30

Crack The Con 2022 Contest write-up HashMob.net

While it's extracting and downloading | run

Brute force on -a3 ?a?I?1?1?1?1?1?1 -i resulted in +42 for 6 948 total in <2 minutes

Running the new wordlist with best64 gives +2@ new hits. Those hits show that it's mostly focused on the species and
not family names so | duplicate the wordlist, replace spaces with newlines and run things again with more rules

New wordlist + fordyv2 and loopback gives +2 703 for 9 671 total in 2 minutes or so

New wordlist + Robot_currentbestrule and loopback gives +676 for 18 347 total in 2 minutes or so

Because most founds are lowercase and | didn't lowercase everything | don't get all the hits since it requires the | rule
most of the time or a TO so rule comboing or changing my dataset will help. First:

New wordlist + rule stacking top_1500 and top_1500 and loopback gives +1 443 and +1 897 after loopback for 12 244
total in 10 minutes or so

Let's make all words lowercase and run fordyv2 and robot_currentbestrule again to get another +345 and +74 founds.
Alternatively you can make a file with a single | rule in it and stack that. New total is 12 663 . Running again took about
5 minutes

Getting lower on founds so let's analyze a bit more. we use gramify with character (kgram) splitting on our founds with
the command python3 gramify.py character bacteria.txt bacteria --min-length=4 --max-length=128.\We then
grab the k_start and k_end, sort it with the suggested command and throw it in the combinator.exe with -r fordyv2.
which looks like:

combinator.exe k_start_bacteria_sorted.txt k_end_bacteria_sorted.txt | hashcat -m26@e -0
Challengel.txt -o challenge_1.new --potfile-path=challenge_1.found -r
D:\Rules\Fordyv2.rule

This attack can be replaced for a smaller rule list to run it faster. Total runtime was 30 minutes before it was stopped
early (meaning you can get more letting it run longer, avg 36 per minute).

This particular attack uses common prefixes, suffixes and rules to generate a powerful combo. Giving us another +1 390
founds for a total of 14 e53. This is the 4th most in the contest and this attack took about 5 minutes.

Most of the newest plains often include a ?d or ?s in the prefix so let's make some prefix rules for that, 1 character. They
also often include a digit in the center (mostly 0's) so let's create an i and s rule as well so we can stack them together.
maskprocessor mp32.exe from hashcat-utils can help us with this .\mp32.exe -1 ?s?d -2 si -3?dABCDE "~?1 ?2?3%d
> bacteria.rule”. We can now run bacteria.txt (our generated bacteria data) with these rules to see if we can get
some more and include loopback. Example of the command below:

hashcat -m260@ -0 Challengel.txt -o challenge_1l.new --potfile-path=challenge_1.found
bacteria.txt -r rules\best64.rule -r bacteria.rule --loopback

This gives us +376 founds after loopback for a total of 14 43e

Doing the same with top_250 instead of best64 gives us another +354 founds after loopback with 14 784 founds total.
To finish this off we'll do one more pass of empty.txt (empty wordlist) with some different rule files like fordybigboy,
robotbest, nsa_dive, and reduce our previous bacteria.rule to only prefix and not insert/replace and stacking that in turn
with the other rules we've used before we can get another summed +1 669 for a total of 16 453 (inserts and replaces
were slowing us down a lot) (all these last rule attacks with empty.txt combined took < 10 minutes)

To let randomness do some talking we can do empty.txt with -g 1000000 a few times to get another +397 for a total
16 850 . (edited

Page 31

Crack The Con 2022 Contest write-up HashMob.net

These random ones have added a bunch of Prefix + toggles so let's combo some fordy10k with prefix and toggles. This
gives us another +719 for a final 17 ee4 and we can keep combining this with even more rules, iterations, do some
more rules and keep repeating the process as much as possible until we only get a few hits and then we'd continue to
look for another patterns we're potentially missing and so on. The last attack also brought up a lot of 'crackthecon’
founds so we can run a few more attacks | performed above with rules etc. | won't document the next few attacks but
they're basically just rule attacks on empty.txt. We end up with a final of 17 ses.

The primary thing here is realizing that themes are often common and once you run dry on the basic stuff you can try to
detect or search for base words that were used. Since we're attacking a fast algorithm like md5 or md5x2 or shal we
can run fast short attacks which gives us a lot of coverage and diversity. If we were to add debug rules we can re-use

our debug rules when searching for new base-words and have a good chance of discovering new founds. ceditec

The above write-up of Challenge 1 showcases how you can perform basic attacks, analyze,
perform different attacks based on your analysis, analyze and perform more attacks. Each
time you see your founds going down it’s an indication that you're exhausting what you can
recover with what you currently have available. This means that you need to start introducing
some form of variation to try and exploit a new pattern. With this write-up a team could
have achieved around 17 800 founds. This would put them in the third spot of teams on that
list after having spend approximately 4 hours spent on it alone. With a team working on it
with more than one graphics card this can easily be done in half the required time and can
likely get even more.

Page 32

Chapter 5

Closing Notes

This concludes the write-up of both the Pro and Street team of HashMob.net. Both teams
have had many learning opportunities and were shown room for improvement in different
forms. We again wish to thank the contributions of all members of both teams, and the contest
staff. This write-up was written not to only talk about how we achieved what we did, but also
how we could have improved ourselves even more. We discussed the things we struggled with
and hope you learn both from our successes and mistakes in your future endeavors. Finally
I'd like to invite everyone to check out the https://hashmob.net/ website and community, and
join the discord community (linked on the website). It’s an open community where you can
actively research passwords, attacks and learn more about the general field of cryptography.
Our community contains members of various backgrounds with a wide variety of skill sets
and most relevant questions can be answered expertly. To finish up the write-up we’ll leave
you with a small list of things that went wrong to humor you.

Issues
e HashMob.net upload limit was still in e Hashtopolis pushing too many founds
place, limiting 5MB & 2 lists per hour. to the Pro Team’s instance resulting in

e HashMob.net submissions could not be 10+ pages of backlog.

> hashcat mode 9998 (instead of 99998) e Hashtopolis reporting negative keyspace

e HashMob.net verification prevented the processed / progress.

uploading of md5x4 and above. e Making assumptions (like assuming ev-

e Hashtopolis creating 21,000 subtasks for eryone else had already checked 2-3
an attack with rules. words for the Troubador list).

Though most issues were resolved in their own time, a contest always pushes the boundaries
of what is possible.

33

