

Hashes.com/Hashkiller.io
2025 Contest Writeup
This is a writeup for the contest from Hashes.com and Hashkiller.io on 2025 which started on
sunday 5 January 2025 and ended on the 7th of January (GMT)1 with a prize reward of $2500.
This forum post redirected the users to a contest page: https://contest.hashes.community/ which
presented people with a list of hashes.

This is everything that was provided to users to get started with the contest. With that in mind
Vavaldi, Penguinkeeper, and Shooter3k (3 veteran members of HashMob) set out to tackle
these challenges. The rest of the document will explain what we discovered about the individual
steps and how we solved it. This might also include some additional findings or issues we ran
into.
This document contains spoilers and solutions. If you are interested in completing this
challenge yourself we recommend you stop reading now.

1
https://forum.hashkiller.io/index.php?threads/completed-hashes-com-hashkiller-io-2025-contest-2-500.72
373/

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

https://contest.hashes.community/
https://forum.hashkiller.io/index.php?threads/completed-hashes-com-hashkiller-io-2025-contest-2-500.72373/
https://forum.hashkiller.io/index.php?threads/completed-hashes-com-hashkiller-io-2025-contest-2-500.72373/

Step 1
The first step started off fairly easy to solve but hard to submit. Using mdxfind we quickly
discovered that the hashes were simple MD5 x22 hashes. However, the solution didn’t work
initially. After trying some alternatives we reached out to the creator and after a fix was applied
the solution started working.

When placing the hashes in the right order it reads:

9a193edaf53ea056b541c3dbf3036b9d:https
a1bc05d1338cfcf1117caee47d67c609:hashes
0e434a18442abc8389869b45891fa099:com
ba617727e903bb7120989f0699fde13a:tools
7466d1e13223c8904ca430f943b8e1c7:base64
4723fc99898fdbe1f4972cb48616ce55:encode
D592cc52753616bae15f31339984dcb7:173

This is a broken-down URL to https://hashes.com/tools/base64encode allowing you to base64
encode data. When encoding the data: 173 it returns the value: “MTcz”. When entering that as
the password it displayed a URL to the next page. To not make it too easy for anyone wishing to
follow this we won’t disclose any other URL’s, but will include plains. We encourage everyone
interested in participating in the challenge to complete these themselves.

2 md5(md5($pass))

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

https://hashes.com/tools/base64encode

Step 2
The second challenge presented the users with a large belgium flag in the background and a
clue: “BE”.

Although not visible in the front-end this also included a phone number emoticon. This could be
observed by inspecting the elements of the HTML page via F12 (chrome) or ‘right click’ =>
‘inspect element’.

The phone number clue refers to the international prefix code used by phone numbers. For the
United States this is +1, for Belgium this is +32. Additionally you’ll notice that it refers to the text
as “Cipher” an indication that this is also different from the Hashes we were presented with
before, and as many will spot it is not a hexadecimal range or a common hash format.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

The hint: “0123456789abcdefghijklmnopqrstuvwxyz .,:” possibly refers to a substitution cipher
and +32 refers to a transposition of some sort. So some of the first things tried were Caesar’s
cipher and Atbash as they are commonly used transposition ciphers. This didn’t lead to anything
legible. However, by taking the hints’ alphabet and transposing it 32 characters to the left (or
right) lead to a readable text. Meaning the character 0, 32x to the left is W and ‘0’ 32x to the
right is 8 and so on.

0123456789abcdefghijklmnopqrstuvwxyz .,: Original

wxyz .,:0123456789abcdefghijklmnopqrstuv 32 to the left

89abcdefghijklmnopqrstuvwxyz .,:01234567 32 to the right

To the left
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz
%20.,:','wxyz%20.,:0123456789abcdefghijklmnopqrstuv',false)&input=am0yd3ZsNGp3emxteiA0
dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NG
o2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9
wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4
aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kN
mtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3d
XUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF

To the right
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz
%20.,:','89abcdefghijklmnopqrstuvwxyz%20.,:01234567',false)&input=am0yd3ZsNGp3emxteiA0
dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NG
o2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9
wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4
aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kN

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','wxyz%20.,:0123456789abcdefghijklmnopqrstuv',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','wxyz%20.,:0123456789abcdefghijklmnopqrstuv',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','wxyz%20.,:0123456789abcdefghijklmnopqrstuv',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','wxyz%20.,:0123456789abcdefghijklmnopqrstuv',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','wxyz%20.,:0123456789abcdefghijklmnopqrstuv',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','wxyz%20.,:0123456789abcdefghijklmnopqrstuv',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','wxyz%20.,:0123456789abcdefghijklmnopqrstuv',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','wxyz%20.,:0123456789abcdefghijklmnopqrstuv',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','89abcdefghijklmnopqrstuvwxyz%20.,:01234567',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','89abcdefghijklmnopqrstuvwxyz%20.,:01234567',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','89abcdefghijklmnopqrstuvwxyz%20.,:01234567',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','89abcdefghijklmnopqrstuvwxyz%20.,:01234567',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','89abcdefghijklmnopqrstuvwxyz%20.,:01234567',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','89abcdefghijklmnopqrstuvwxyz%20.,:01234567',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF

mtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3d
XUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF

Smashing them together line by line results in the total plain:

beyond borders lies a treasure untold,
where hashes reside and secrets unfold.
to journey there, your origin must be right,
from belgiums soil, your ip shines
the path is simple, the task is clear.
abide by the rules and you will find yourself
contest.hashes.community/xxxxxxxxxxxxxxxx

Besides a link to the next step it also includes a piece of text that could provide a hint to step 3.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','89abcdefghijklmnopqrstuvwxyz%20.,:01234567',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF
https://gchq.github.io/CyberChef/#recipe=Substitute('0123456789abcdefghijklmnopqrstuvwxyz%20.,:','89abcdefghijklmnopqrstuvwxyz%20.,:01234567',false)&input=am0yd3ZsNGp3emxteiA0dHFtIDRpNC56bWkgLHptNCx2Lnd0bDYNCm85Nmo2czkyazk2a3NqNmthNTZzMmY1c2s2NGo2bGtzbWY3Z2Q1dA0KLnc0cncsenZtMjQucG16bTY0MncsejR3enFvcXY0dSwgLjRqbTR6cW9wLjYNCjdqZ2VzMzZkOGFtZSdrc2tnYWR1c3FnbWpzYWhzazlhZjZrczNqYTg5bHQNCi5wbTR4aS5wNHEgNCBxdXh0bTY0LnBtNC5pIHM0cSA0a3RtaXo1DQoyM2E1NnMzcXNsOTZzam1kNmtzMmY1c3FnbXNvYWRkczdhZjVzcWdtams2ZDdzOTZqNnYNCmt3di5tIC41cGkgcG0gNWt3dXUsdnEuMi9kZm5nZmpkY2tlaGpnOGNi&ieol=CRLF&oeol=CRLF

Step 3

Step 3 links to a cloudflare block page. Initially considering this to be a potential issue with the
link we later considered that this might be because it wants us to use the hint from the last step
to place our ‘origin’ from ‘belgian soil’. to journey there, your origin must be right,
from belgiums soil, your ip shines. Using a VPN we could change our origin IP to be
from Belgian origin. Allowing us to access the 3rd challenge.

This provides a hashcat terminal in an ubuntu instance - or so it seems at first. But clicking on
things quickly shows this is a javascript replication of the Ubuntu desktop and it’s not actually
capable of much. But what grabs the attention is a hash at the top with an error message. The
Hashcat status is `cracked` and those with a sharp eye might spot that the Candidates.#1 is a
printable ascii. When we decode this it reads the message: “looks can be deceiving”. This does
not compute to the desired hash.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Inspecting the source-code of the website again we can spot a large chunk of encoded and
obfuscated JavaScript. Now the solution to this step knows two answers / approaches.

The first is to attempt to deobfuscate the Javascript. By properly doing so you get pieces of
string which include the URL of the next step. This is done through bitshifts, string replaces, and
base64 encoding/decoding.

The second solution is slightly more elegant, but requires a good eye and possibly some
inspection of the HTML / deobfuscated javascript source code. An observant eye might catch
the “id” of the container being an í instead of an i. Replacing this doesn’t perform any changes
though. This is because the “container” text is multibyte as well (the “a” character specifically”)
and explains why the code would not function. This is of course by design as part of the CTF.

You can see the response being highlighted by the browser because an update is performed.
Every second the obfuscated javascript tries to modify the text based on the container field.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

As soon as the container id exists properly, the web-page updates. Displaying a link to the next
location. Although this is a more elegant solution, it definitely isn’t something that’ll be quickly
spotted and I think it’s likely that relatively few people discovered this compared to the
deobfuscation of the javascript.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Step 4
The fourth step presents us with a Windows Logon screen. Similar to before the only ‘real’ items
are the password field and login button. Despite our best intentions, we were unable to shut
down the machine using the power button.

One thing that ended up catching our eye with this login screen was the <style> tag near the top
of the page. Including Hex colors that were not actively used, didn’t correspond to their label,
and multiple invalid colors. Providing 4 bytes of data as opposed to the usual 3 (R, G, and B).
Concatenating each color + the 4 bytes for the non-rgb color yielded five 32-hex strings which
we cracked as NTLM - all of which were in a hexadecimal keyspace.

a7d16ab30e04a3bb7db4690ab945c724:5440353
a5078aeabeec95fac76eab27d9ba7e6d:7332D37
4e7a2d7f4375cfc2ba25b97315e1291c:48332D5
100f5c43598b27b074df6524aab325af:240314E
7b11a47dfecbe3c27e5a97d4aec3325b:31333057

Concatenating and decoding them from hex => UTF8 resulted in a password which allowed us
to successfully log in: T@573-7H3-R@1N130W.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Step 5
The fifth step in this saga leads us to a fake browser that has been hit with a form of SQL
Injection. The password of the admin account appears exposed, but hashed. Similar to previous
challenges this is not an actual VBulletin forum. We investigated the vbulletin version for exploits
and made sure the server wasn’t accidentally making itself vulnerable to more than might be
intentional for the challenge (an RCE existed).

Our many years of experience working with hashes has given us a keen sense to spot what is
and what isn’t a valid algorithm. For example, the vbulletin hash displayed is not a normal
vbulletin hash as the characters used in the salt and their distribution do not line up with how a
salt is normally generated for VBulletin version >= 3.8.5 (-m 2711). This was our first giveaway
that the hash might potentially not be crackable - yet we still fired away just in case.

Want a personal challenge? Which of these hashes are not valid based on a quick glance?
 PB3145678aIagS59cHZiaQ4Phnbq7ac.
 P984lag476421S59wHZvyQMArzfx58u<

The second giveaway was that if the ‘forgot password’ button was pressed, the hash would be
updated to something we recognized as potentially valid.

Before password reset:

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

After password reset:

The next part was a bit of a gamble but we decided to discard the first hash, with the principle
that the ‘reset password’ was likely the right route. Especially with how we considered the first
salt to be potentially invalid or unnatural.

We cracked this hash by looking how this might work in code. We pressed a forgot password
button which ‘emailed us our password’. This means it generated a new password randomly,
and since the hash updated it might have reset it. Now all we need to do is guess the random
password. We did this by looking up the logic vbulletin uses to reset the password.

The code fetches a random character X-times from a list of characters that is just shy of the full
alphabet, missing letters such as “O” and “i”.
function fetch_random_password($length = 8)
{
 $password_characters =
'ABCDEFGHJKLMNPQRSTUVWXYZabcdefghjkmnpqrstu vwxyz';
 $total_password_characters = strlen($password_characters) - 1;

 $digit = vbrand(0, $length - 1);

 $newpassword = '';
 for ($i = 0; $i < $length; $i++)
 {
 if ($i == $digit)
 {
 $newpassword .= chr(vbrand(48, 57));
 continue;
 }

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

 $newpassword .= $password_characters{vbrand(0,
$total_password_characters)};
 }
 return $newpassword;
}

This leads us to build a mask attack like so:

?d?1?1?1?1?1?1?1
?1?d?1?1?1?1?1?1
?1?1?d?1?1?1?1?1
?1?1?1?d?1?1?1?1
?1?1?1?1?d?1?1?1
?1?1?1?1?1?d?1?1
?1?1?1?1?1?1?d?1
?1?1?1?1?1?1?1?d

With the ?1 being the definition of the keyspace. “ABCDEFGHJKLMNPQRSTUVWXYZabcdefg
hjkmnpqrstuvwxyz”. Which will result in commands like so:

hashcat.exe -m2711 -1 ABCDEFGHJKLMNPQRSTUVWXYZabcdefghjkmnpqrstuvwxyz
hash.txt ?d?1?1?1?1?1?1

Eventually we cracked the password: “GrwJqR9h“.

1665755dd738e948ad62a8a9fd423574:9v?jY1;*NzBxKR327xG*!mh)YWke&T:GrwJq
R9h

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Step 6
Step 6 was a challenge where a fake Adminer login screen was presented to us.

We first looked at the source code but didn't immediately see anything strange, so we attempted
default credentials for Adminer and even attempted to look for potential vulnerabilities in
Adminer, just in case there was any exploitable information there. After a few hours, we noticed
the strangely large integrity tag on the import for the Javascript library "jquery" and decided to
investigate further, as none of the other steps had this oddity. It was initially ignored, due to the
integrity tag being perfectly standard in a HTML page. It was only after we had already noticed
the oddity, that we realised the "i" in the "integrity" tag wasn't a normal "i" (\x69), but was instead
a multibyte "і" (\xd1 \x96), which was completely invisible just from looking at the code, but a
quick grep solidified that the integrity tag data was the hint we had to pursue.
$ curl https://contest.hashes.community/$URLSUFFIX | grep -P "[^\x00-\x7F]"
 іntegrity= …

The data part of the integrity tag appeared to be a normal sha256, base64 checksum, but when
decoded, it had the "PNG" magic bytes of a PNG image. This was immediately suspicious, so
we decoded the data from base64 to a raw file and opened it, sure enough, it was a tiny, 1x1,
transparent pixel with the metadata:
jEWgj1FGxG9qkv31Vva7d5hm6ZtGhKbNkBWRR4LhiCYbqRhta76FJhCTW1XTzmhAVsTkxUX5Gv
46T74Ko18PeTxhfA8gYftN6Z8iyza7jNqxf5rmuGCgxysPnNcFxZRpvkZysnF9AnDwrgJr2kcQ
zrJwDfK3m4xBC2HFqs7pytFotsigE7ksVCikxjXD9QuQJowQXCLkT2vEaaPoYcP8koWsmWGyB1

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

QWVCqz3DkQ29uYuVp1CtUdpyy2W2bbiL9ees1VLBzHzsM1zkgLJL8pBwwiY9mMnt5XjnP4q7cj
prFPtPGrhavUfmzqNmp5YCQH5L

This, we assumed to be yet more base64 but after decoding, it was just gibberish, we attempted
to make a hashlist out of this, separating it into various sizes but to no avail. After a while of
staring at it, we noticed that it didn't have the usual special characters of base64 - no = padding
or "./" charset. This wasn't base64, but was base58, we decoded this and it became a simple
hashlist for us to crack - what we're best at:

8022e5f626ed56c5998e462da731302ac0455fb74d5b4c0409c1938b7360acaa
4813494d137e1631bba301d5acab6e7bb7aa74ce1185d456565ef51d737677b2
*B5D43CAF943292E6F969AF02D1A7819F33F9B68B
49402232bda4a590381634a60e34bee683a256db10210eb8bf66d69e8368637c

These hashes were fairly simple to identify, hashes 1,2 and 4 were 64hex so it was assumed to
be SHA256 (but we kept our minds open for other algorithms), and hash 3 was a tell-tale
MySQL4.1 / 5 hash, with the full capitalisation and the asterisk signature at the start. We quickly
realised that these were finally the credentials for the adminer login page - hash 2 fell first, "root"
- the username. We then realised that there is likely a domain or IP in there, for the "server"
field, so that soon fell too, with hash 1 resolving to "216.58.214.163". Shortly after was the final
sha256 hash, hash 4 - "hashes_database", we only needed the password. After an hour of
scratching our heads, we realised that the strange hexadecimal URLs haven't been used yet
and manually attempted the step 6 URL suffix, "9cfe.." and sure enough, it matched the
remaining hash perfectly. We now had all of the fields we needed for the login page and were
greeted with the next step's URL.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Step 7
In Step 7, we were presented with a fake electrum wallet seed phrase wallet restoration prompt
with the included text being way too many words to be BIP39-compatible.

Our initial approach was to check the frequency of each of the words, creating a histogram.
Here we noticed there were duplicates and that exactly 12 words were included that did not
have duplicates - rather interesting as most BIP39 seed phrases were 12 words long, but we
didn't know what order they were in and we didn't want to flood the Hashes.com server with 12!
(479,001,600) requests, so we simply tried these 12 in the order they were already in, with the
placeholder text, as there was only 1 unique solution for this and sure enough - we were given
Step 8's URL.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Step 8
The 8th challenge was to crack 15 different passwords encrypted with Joomla MD5 (-m400).
Each user had metadata associated with them, simulating a real database.

By extracting all the data in CSV columns and manipulating them we created combinations of
their username with rules, their dates of birth and combined them with each other to get large
and complex passwords. We used tools like combinator.exe from hctools and a custom tool

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Vavaldi developed at one point for another HashMob user to create combinations between
metadata values.

PB/24kdckw5e7TAg4ax28BYAcqppJgB1:1993-03-30MiamiFL
PB4ECFw280DLLGw6GE0C63J9Q7.Y7at0:USATravelerpharris72
PB7Xe3c/mVQ41Kwz6fdIVp2x9N2QqOE/:jordan
PBAH93rk6f..UO2qm9gca37iO4txH7G1:laura.lewis811981-06-18San Diego
PBcqoNw3JwMkrvFcANao/DqdP9EM5Bn/:1976-03-09
PBJ/eeA6ctxvCnojgwW4ObG5B/B6J711:Austin
PBJT4YaCY48qnagm9NQxhcri/OJwWSF.:samanthacartersamantha.carter95
PBKiNc8zqVK9dgNyiPsaspWmWb7mJhm/:emily.rose92
PBlbykrStaNCJgfoE.3.jNZ6ofzA9LB0:HoustonTX77001
PBndKmN6Pia3Aa71O.hCWUAAmfPt5bi0:TX75201USA
PBrTwfbUe3W8Zj86F0fTueXqg.jY1uw/:robertjames70robertjames
PBtZHEMwfMixWyP6fqQLkrNylfZN/db0:37201USABookworm
PBtzNkKeirwzgpu/h6IakYfe5Z.Ie1p/:johndoe90
PBu8xmuKPTvNhCaZ6irb78/jCeVIRU80:sarah
PBz3by09o669E/vfj9mieS3ZGBfklyG.:evanschris.evans851985-08-05

Entering all these in their correct field returns the next URL

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Step 9
This step involved a repeating cloudflare loading page that kept loading over and over. One
thing that stood out here was that the Ray ID was longer than usual, almost looking like a hash.
This was confirmed when we recognized the bytes being in ASCII keyspace and decoding the
value “74686973206973206e6f74207265616c” to get the text: “this is not real”.

This leads us to inspect the source code a little closer. In doing so we discover a trigger in the
cx() function that only happens if a certain localStorage value is set, disabling the loading page
and revealing another website. By setting the item “uam” in local storage with the value “off” the
new page is revealed.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

Step 10
The last step of the puzzle leads to a .zip file download. The file is protected by a password and
as we start cracking away at the hashes we tried to extract with zip2john we spot that the hint
“Oh no! The password has been misplaced.” has a key as logo. We decide to investigate the
SVG’s further and discover that there’s an image hidden in the
https://contest.hashes.community/key.svg, key.svg file with 0 opacity. When setting the opacity
to 1 it reveals itself.

It’s a small Ethereum logo at the end of the key.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

https://contest.hashes.community/key.svg

Looking inside the XML of the SVG file we observe the previously hidden logo has words like
“blockHeight” which seem out of place for an SVG object about Ethereum.

<g xmlns="http://www.w3.org/2000/svg" fill-opacity="1"
transform="scale(0.1) translate(2500,3600)" type="gama"
blockHeight="21539263" dominant-baseline="auto" x="30" y="145"
txn="0.00023524" tabindex="2">

Although it proves a bit of a challenge to find the right transaction with the correct gas fee we
finally locate it. A transaction processed at block height of 21539263 and a Gas fee of
0.000235249474719 which matches the txn and is on the Ethereum blockchain.

https://www.blockchain.com/explorer/transactions/eth/0xba8b6f3d8e866e4959ac289f3ada300c5
092bab6d571a5adc3f6aab8dadb7615

In the meanwhile we struggled with collisions in the zip archive, with hashcat providing us a
plethora of “valid” passwords that decrypt data for one file and causes corruption in the process.
Not giving us the ‘correct file’. We tried a LOT of different encryptions and techniques in the
hopes of making sense out of the corrupted data. This took up a lot of our time at this stage of
the contest. We then take note of the fact that “0.000235249474719” falls almost entirely within
the printable ascii range, except for the 19 at the end. Decoded it reads: “#RIGG‼”.

Unfortunately this is where the contest ended for us. With us not progressing further than this
potential hint. After the contest received the hint that the solution to this last problem was based
on a vulnerability in the legacy zip encryption ZipCrypto / PKWARE. This known-plaintext
vulnerability allowed you to easily crack open ZIP archives if you knew at least 12 bytes of one
of the files and they were encrypted using the ‘store’ setting or without compression (in the case
of encryption you would need to compress your target bytes first). To help us with the entire
process we will make use of the BKCrack tool: https://github.com/kimci86/bkcrack.

The known plaintext for us is the target hash of the transaction: The ethereum wallet address.
This is likely to be stored inside the wallet.json file and could be guessed by us.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

https://www.blockchain.com/explorer/transactions/eth/0xba8b6f3d8e866e4959ac289f3ada300c5092bab6d571a5adc3f6aab8dadb7615
https://www.blockchain.com/explorer/transactions/eth/0xba8b6f3d8e866e4959ac289f3ada300c5092bab6d571a5adc3f6aab8dadb7615
https://github.com/kimci86/bkcrack

We notice how the compression is “Store” and the encryption is “ZipCrypto” and this tells us that
the zip file is vulnerable to exploitation.

Now this approach could work by slowly increasing the -o parameter one by one. But that can
take a while. An alternative is to guess the entire structure, including potential markup
(spaces/tabs/newlines/carriage returns). Starting off with the luckiest guess would lead you to
try: “{“address”:”a564881458a1be24223ea2cae64f7047749fdff5” which would match the first
12+ bytes of the file and give you the “keys”, which can then be used to decrypt both files:
wallet.dat and password.txt. Where password.txt is the password of the encrypted wallet.dat file.

Finally the command: bkcrack -C encrypted.zip -k 12345678 23456789 34567890 -U unlocked.zip
new_password can be used to decrypt the file and successfully recover the public and private key
of the wallet that originally contained the 2.5k reward money. We took 1$ left in the wallet and
left a tiny bit in for the next team reaching the end.

Closing
The challenges were creative in nature and really challenged us in some cases. Eventually
stumping us on the last one. We spent nearly 7 hours stuck on that portion of the challenge until
the contest was won. Congratulations to DDNK and his teammates for winning the contest, and
thanks to Hashes.com for organizing this event with a lofty prize. We look forward to seeing
future contests.

Hashes.com / HashKiller.io Contest 2025 writeup by Vavaldi, Penguinkeeper, Shooter3k

	Hashes.com/Hashkiller.io
	2025 Contest Writeup
	Step 1
	
	Step 2
	To the left
	To the right

	
	Step 3
	
	Step 4
	Step 5
	Step 6
	
	Step 7
	Step 8
	Step 9
	
	Step 10
	Closing

